Distribution Theory and Transform Analysis

Distribution Theory and Transform Analysis

Author: A.H. Zemanian

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 404

ISBN-13: 0486151948

DOWNLOAD EBOOK

Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.


A Guide to Distribution Theory and Fourier Transforms

A Guide to Distribution Theory and Fourier Transforms

Author: Robert S. Strichartz

Publisher: World Scientific

Published: 2003

Total Pages: 238

ISBN-13: 9789812384300

DOWNLOAD EBOOK

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.


Distribution Theory

Distribution Theory

Author: Gerrit Dijk

Publisher: Walter de Gruyter

Published: 2013-03-22

Total Pages: 120

ISBN-13: 3110298511

DOWNLOAD EBOOK

The theory of distributions has numerous applications and is extensively used in mathematics, physics and engineering. There is however relatively little elementary expository literature on distribution theory. This book is intended as an introduction. Starting with the elementary theory of distributions, it proceeds to convolution products of distributions, Fourier and Laplace transforms, tempered distributions, summable distributions and applications. The theory is illustrated by several examples, mostly beginning with the case of the real line and then followed by examples in higher dimensions. This is a justified and practical approach, it helps the reader to become familiar with the subject. A moderate number of exercises are added. It is suitable for a one-semester course at the advanced undergraduate or beginning graduate level or for self-study.


Theory of Distributions

Theory of Distributions

Author: Svetlin G. Georgiev

Publisher: Springer

Published: 2015-07-13

Total Pages: 217

ISBN-13: 3319195271

DOWNLOAD EBOOK

This book explains many fundamental ideas on the theory of distributions. The theory of partial differential equations is one of the synthetic branches of analysis that combines ideas and methods from different fields of mathematics, ranging from functional analysis and harmonic analysis to differential geometry and topology. This presents specific difficulties to those studying this field. This book, which consists of 10 chapters, is suitable for upper undergraduate/graduate students and mathematicians seeking an accessible introduction to some aspects of the theory of distributions. It can also be used for one-semester course.


Distributions, Partial Differential Equations, and Harmonic Analysis

Distributions, Partial Differential Equations, and Harmonic Analysis

Author: Dorina Mitrea

Publisher: Springer Science & Business Media

Published: 2013-09-20

Total Pages: 475

ISBN-13: 1461482089

DOWNLOAD EBOOK

​The theory of distributions constitutes an essential tool in the study of partial differential equations. This textbook would offer, in a concise, largely self-contained form, a rapid introduction to the theory of distributions and its applications to partial differential equations, including computing fundamental solutions for the most basic differential operators: the Laplace, heat, wave, Lam\'e and Schrodinger operators.​


The Analysis of Linear Partial Differential Operators I

The Analysis of Linear Partial Differential Operators I

Author: Lars Hörmander

Publisher: Springer

Published: 1990-08-10

Total Pages: 462

ISBN-13: 9783540523437

DOWNLOAD EBOOK

The main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comments on this collection. As in the revised printing of Volume II, a number of minor flaws have also been corrected in this edition. Many of these have been called to my attention by the Russian translators of the first edition, and I wish to thank them for our excellent collaboration.


Distributions

Distributions

Author: J.J. Duistermaat

Publisher: Springer Science & Business Media

Published: 2010-08-09

Total Pages: 455

ISBN-13: 0817646752

DOWNLOAD EBOOK

This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quantum mechanics, quantum field theory, and signal analysis. The book is motivated by many exercises, hints, and solutions that guide the reader along a path requiring only a minimal mathematical background.


Introduction to Analysis

Introduction to Analysis

Author: Maxwell Rosenlicht

Publisher: Courier Corporation

Published: 2012-05-04

Total Pages: 270

ISBN-13: 0486134687

DOWNLOAD EBOOK

Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.


Introduction to the Theory of Distributions

Introduction to the Theory of Distributions

Author: Israel Halperin

Publisher:

Published: 1952

Total Pages: 0

ISBN-13: 9781487591328

DOWNLOAD EBOOK

This pamphlet, based on lectures given by Laurent Schwartz at the Canadian Mathematical Congress in 1951, gives a detailed introduction to the theory of distributions, in terms of classical analysis, for applied mathematicians and physicists. Mathematical Congress Lecture Series, No. 1


Lectures on the Fourier Transform and Its Applications

Lectures on the Fourier Transform and Its Applications

Author: Brad G. Osgood

Publisher: American Mathematical Soc.

Published: 2019-01-18

Total Pages: 713

ISBN-13: 1470441918

DOWNLOAD EBOOK

This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.