The widespread availability of quiet, diesel electric submarines and inexpensive mines is posing a growing threat to global access by the U.S. Navy. In response, the Navy has expanded its undersea warfare efforts and put particular emphasis on the potential for new distributed remote sensing (DRS) approaches. To assist with this effort, the former Chief of Naval Operations requested the NRC to conduct an assessment of DRS for naval undersea warfare. This report provides a clear, near-term path by which useful DRS systems can be applied rapidly to pressing naval USW problems, and by which ongoing science and technology efforts can be directed toward the most useful options. The report contains information as described in 5 U.S.C. 552(b) and therefore could not be released to the public in its entirety. The public version consists of the front matter and executive summary.
The Navy has put forth a new construct for its strike forces that enables more effective forward deterrence and rapid response. A key aspect of this construct is the need for flexible, adaptive command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) systems. To assist development of this capability, the Navy asked the NRC to examine C4ISR for carrier, expeditionary, and strike and missile defense strike groups, and for expeditionary strike forces. This report provides an assessment of C4ISR capabilities for each type of strike group; recommendations for C4ISR architecture for use in major combat operations; promising technology trends; and an examination of organizational improvements that can enable the recommended architecture.
To offer security in the maritime domain, governments around the world need the capabilities to directly confront common threats like piracy, drug-trafficking, and illegal immigration. No single navy or nation can do this alone. Recognizing this new international security landscape, the former Chief of Naval Operations called for a collaborative international approach to maritime security, initially branded the "1,000-ship Navy." This concept envisions U.S. naval forces partnering with multinational, federal, state, local and private sector entities to ensure freedom of navigation, the flow of commerce, and the protection of ocean resources. This new book from the National Research Council examines the technical and operational implications of the "1,000-ship Navy," as they apply to four levels of cooperative efforts: U.S. Navy, Coast Guard, and merchant shipping only; U.S. naval and maritime assets with others in treaty alliances or analogous arrangements; U.S. naval and maritime assets with ad hoc coalitions; and U.S. naval and maritime assets with others than above who may now be friendly but could potentially be hostile, for special purposes such as deterrence of piracy or other criminal activity.
Among its key responsibilities, the U.S. Special Operations Command (SOCOM) plans and synchronizes operations against terrorist networks. At any given moment, SOF are likely to be engaged in some state of the planning or execution of special operations in many countries around the world, spanning a wide range of environments and mission. SOF therefore must be capable of operating in environments ranging from tropical jungle to arctic, maritime to desert, subterranean to mountainous, and rural to urban. Within this vast range additional factors may influence technical and operational requirements including weather, topography, bathymetry, geology, flora, fauna, and human population density. All of these factors must be weighed in terms of the challenges they pose to supporting communications and operational security. In short, SOF must maintain the capability to operate globally, in any environment, angainst any threats that can be countered by its unique capabilities. Sensing and Supporting Communications Capabilities for Special Operations Forces focuses primarily on the key core SOF task of special reconnaissance, to determine SOF-specific sensing and supporting communications needs and mapping them to existing and emerging technologies. The book discusses preliminary observations, issuees, and challenges, and identifies additional capabilities and technology areas that should be addressed.
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
Environmental information is important for successful planning and execution of naval operations. A thorough understanding of environmental variability greatly increases the likelihood of mission success. To ensure that naval forces have the most up-to-date capabilities, the Office of Naval Research (ONR) has an extensive environmental research program. This research, to be of greatest use to the warfighter, needs to be directed towards assisting and solving battlefield problems. To increase research community understanding of the operational demands placed on naval operators and to facilitate discussion between these two groups, the National Research Council's (NRC) Ocean Studies Board (OSB), working with ONR and the Office of the Oceanographer of the Navy, convened five previous symposia on tactical oceanography. Oceanography and Mine Warfare examines the following issues: (1) how environmental data are used in current mine warfare doctrine, (2) current procedures for in situ collection of data, (3) the present capabilities of the Navy's oceanographic community to provide supporting information for mine warfare operations, and (4) the ability of oceanographic research and technology developments to enhance current mine warfare capabilities. This report primarily concentrates on the importance of oceanographic data for mine countermeasures.
Sea mines have been important in naval warfare throughout history and continue to be so today. They have caused major damage to naval forces, slowed or stopped naval actions and commercial shipping, and forced the alteration of strategic and tactical plans. The threat posed by sea mines continues, and is increasing, in today's world of inexpensive advanced electronics, nanotechnology, and multiple potential enemies, some of which are difficult to identify. This report assesses the Department of the Navy's capabilities for conducting naval mining and countermining sea operations.
A letter dated December 21, 2011, to National Academy of Sciences President Dr. Ralph Cicerone from the Chief of Naval Operations, ADM Jonathan W. Greenert, U.S. Navy, requested that the National Research Council's (NRC's) Naval Studies Board (NSB) conduct a study to examine the issues surrounding capability surpriseboth operationally and technically relatedfacing the U.S. naval services. Accordingly, in February 2012, the NRC, under the auspices of its NSB, established the Committee on Capability Surprise for U.S. Naval Forces. The study's terms of reference, provided in Enclosure A of this interim report, were formulated by the Office of the Chief of Naval Operations (CNO) in consultation with the NSB chair and director. The terms of reference charge the committee to produce two reports over a 15-month period. The present report is the first of these, an interim report issued, as requested, following the third full committee meeting. The terms of reference direct that the committee in its two reports do the following: (1) Select a few potential capability surprises across the continuum from disruptive technologies, to intelligence inferred capability developments, through operational deployments and assess what U.S. Naval Forces are doing (and could do) about these surprises while mindful of future budgetary declines; (2) Review and assess the adequacy of current U.S. Naval Forces' policies, strategies, and operational and technical approaches for addressing these and other surprises; and (3) Recommend any changes, including budgetary and organizational changes, as well as identify any barriers and/or leadership issues that must be addressed for responding to or anticipating such surprises including developing some of our own surprises to mitigate against unanticipated surprises. Capability Surprise for U.S. Naval Forces: Initial Observations and Insights: Interim Report highlights issues brought to the committee's attention during its first three meetings and provides initial observations and insights in response to each of the three tasks above. It is very much an interim report that neither addresses in its entirety any one element of the terms of reference nor reaches final conclusions on any aspect of capability surprise for naval forces. The committee will continue its study during the coming months and expects to complete by early summer 2013 its final report, which will address all of the elements in the study's terms of reference and explore many potential issues of capability surprise for U.S. naval forces not covered in this interim report.
Network-Centric Naval Forces: A Transition Strategy for Enhancing Operational Capabilities is a study to advise the Department of the Navy regarding its transition strategy to achieve a network-centric naval force through technology application. This report discusses the technical underpinnings needed for a transition to networkcentric forces and capabilities.