Control of Distributed Parameter Systems

Control of Distributed Parameter Systems

Author: S. P. Banks

Publisher: Elsevier

Published: 2014-05-18

Total Pages: 554

ISBN-13: 1483151123

DOWNLOAD EBOOK

Control of Distributed Parameter Systems covers the proceedings of the Second IFAC Symposium, Coventry, held in Great Britain from June 28 to July 1, 1977. The book focuses on the methodologies, processes, and techniques in the control of distributed parameter systems, including boundary value control, digital transfer matrix, and differential equations. The selection first discusses the asymptotic methods in the optimal control of distributed systems; applications of distributed parameter control theory of a survey; and dual variational inequalities for external eigenvalue problems. The book also ponders on stochastic differential equations in Hilbert space and their application to delay systems and linear quadratic optimal control problem over an infinite time horizon for a class of distributed parameter systems. The manuscript investigates the semigroup approach to boundary value control and stability of nonlinear distributed parameter systems. Topics include boundary control action implemented through a dynamical system; classical boundary value controls; stability of nonlinear systems; and feedback control on the boundary. The text also focuses on the functional analysis interpretation of Lyapunov stability; method of multipliers for a class distributed parameter systems; and digital transfer matrix approach to distributed system simulation. The selection is a dependable source of data for readers interested in the control of distributed parameter systems.


Distributed Parameter Control Systems

Distributed Parameter Control Systems

Author: Spyros G. Tzafestas

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 526

ISBN-13: 148314738X

DOWNLOAD EBOOK

Distributed Parameter Control Systems: Theory and Application is a two-part book consisting of 10 theoretical and five application-oriented chapters contributed by well-known workers in the distributed-parameter systems. The book covers topics of distributed parameter control systems in the areas of simulation, identification, state estimation, stability, control (optimal, stochastic, and coordinated), numerical approximation methods, optimal sensor, and actuator positioning. Five applications works include chemical reactors, heat exchangers, petroleum reservoirs/aquifers, and nuclear reactors. The text will be a useful reference for both graduate students and professional researchers working in the field.


Control of Distributed Parameter Systems 1989

Control of Distributed Parameter Systems 1989

Author: M. Amouroux

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 533

ISBN-13: 1483298817

DOWNLOAD EBOOK

This volume presents state-of-the-art reports on the theory, and current and future applications of control of distributed parameter systems. The papers cover the progress not only in traditional methodology and pure research in control theory, but also the rapid growth of its importance for different applications. This title will be of interest to researchers working in the areas of mathematics, automatic control, computer science and engineering.


Control of Distributed Parameter Systems 1982

Control of Distributed Parameter Systems 1982

Author: Jean-Pierre Babary

Publisher: Elsevier

Published: 2014-05-16

Total Pages: 661

ISBN-13: 1483153231

DOWNLOAD EBOOK

Control of Distributed Parameter Systems 1982 covers the proceeding of the Third International Federation of Automatic Control (IFAC) Symposium on Control of Distributed Parameter Systems. The book reviews papers that tackle issues concerning the control of distributed parameter systems, such as modeling, identification, estimation, stabilization, optimization, and energy system. The topics that the book tackles include notes on optimal and estimation result of nonlinear systems; approximation of the parameter identification problem in distributed parameters systems; and optimal control of a punctually located heat source. This text also encompasses the stabilization of nonlinear parabolic equations and the decoupling approach to the control of large spaceborne antenna systems. Stability of Hilbert space contraction semigroups and the tracking problem in the fractional representation approach are also discussed. This book will be of great interest to researchers and professionals whose work concerns automated control systems.


Controller Design for Distributed Parameter Systems

Controller Design for Distributed Parameter Systems

Author: Kirsten A. Morris

Publisher: Springer Nature

Published: 2020-06-01

Total Pages: 295

ISBN-13: 3030349497

DOWNLOAD EBOOK

This book addresses controller and estimator design for systems that vary both spatially and in time: systems like fluid flow, acoustic noise and flexible structures. It includes coverage of the selection and placement of actuators and sensors for such distributed-parameter systems. The models for distributed parameter systems are coupled ordinary/partial differential equations. Approximations to the governing equations, often of very high order, are required and this complicates both controller design and optimization of the hardware locations. Control system and estimator performance depends not only on the controller/estimator design but also on the location of the hardware. In helping the reader choose the best location for actuators and sensors, the analysis provided in this book is crucial because neither intuition nor trial-and-error is foolproof, especially where multiple sensors and actuators are required, and moving hardware can be difficult and costly. The mechatronic approach advocated, in which controller design is integrated with actuator location, can lead to better performance without increased cost. Similarly, better estimation can be obtained with carefully placed sensors. The text shows how proper hardware placement varies depending on whether, disturbances are present, whether the response should be reduced to an initial condition or whether controllability and/or observability have to be optimized. This book is aimed at non-specialists interested in learning controller design for distributed-parameter systems and the material presented has been used for student teaching. The relevant basic systems theory is presented and followed by a description of controller synthesis using lumped approximations. Numerical algorithms useful for efficient implementation in real engineering systems and practical computational challenges are also described and discussed.


Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems

Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems

Author: Han-Xiong Li

Publisher: Springer Science & Business Media

Published: 2011-02-24

Total Pages: 175

ISBN-13: 940070741X

DOWNLOAD EBOOK

The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.


Distributed Parameter Systems

Distributed Parameter Systems

Author: S. Ōmatu

Publisher: Oxford University Press, USA

Published: 1989

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

In this unified account of the mathematical theory of distributed parameter systems (DPS), the authors cover all major aspects of the control, estimation, and identification of such systems, and their application in engineering problems. The first part of the book is devoted to the basic results in deterministic and stochastic partial differential equations, which are applied to the optimal control and estimation theories for DPS. Part two then applies this knowledge in an engineering setting, discussing optimal estimators, optimal sensor and actuator locations, and computational techniques.


Control of Distributed Parameter Systems, 1986

Control of Distributed Parameter Systems, 1986

Author: Herbert E. Rauch

Publisher: Pergamon

Published: 1987

Total Pages: 524

ISBN-13:

DOWNLOAD EBOOK

The increasing requirements for active control of large aerospace, chemical and mechanical systems have focused attention on recent research into the control of distributed parameter systems. The increasing capabilities in computation, instrumentation and actuators have made possible implementation of sophisticated control schemes based on this research. This volume represents state of the art reports on the theory and current and future applications, and should be considered essential reading for all those involved in the production of such systems.