This book systematically presents energy-efficient robust fusion estimation methods to achieve thorough and comprehensive results in the context of network-based fusion estimation. It summarizes recent findings on fusion estimation with communication constraints; several novel energy-efficient and robust design methods for dealing with energy constraints and network-induced uncertainties are presented, such as delays, packet losses, and asynchronous information... All the results are presented as algorithms, which are convenient for practical applications.
By exploiting the synergies among available data, information fusion can reduce data traffic, filter noisy measurements, and make predictions and inferences about a monitored entity. Networked Filtering and Fusion in Wireless Sensor Networks introduces the subject of multi-sensor fusion as the method of choice for implementing distributed systems. The book examines the state of the art in information fusion. It presents the known methods, algorithms, architectures, and models of information fusion and discusses their applicability in the context of wireless sensor networks (WSNs). Paying particular attention to the wide range of topics that have been covered in recent literature, the text presents the results of a number of typical case studies. Complete with research supported elements and comprehensive references, this teaching-oriented volume uses standard scientific terminology, conventions, and notations throughout. It applies recently developed convex optimization theory and highly efficient algorithms in estimation fusion to open up discussion and provide researchers with an ideal starting point for further research on distributed estimation and fusion for WSNs. The book supplies a cohesive overview of the key results of theory and applications of information-fusion-related problems in networked systems in a unified framework. Providing advanced mathematical treatment of fundamental problems with information fusion, it will help you broaden your understanding of prospective applications and how to address such problems in practice. After reading the book, you will gain the understanding required to model parts of dynamic systems and use those models to develop distributed fusion control algorithms that are based on feedback control theory.
This book focuses on the basic theory and methods of multisensor data fusion state estimation and its application. It consists of four parts with 12 chapters. In Part I, the basic framework and methods of multisensor optimal estimation and the basic concepts of Kalman filtering are briefly and systematically introduced. In Part II, the data fusion state estimation algorithms under networked environment are introduced. Part III consists of three chapters, in which the fusion estimation algorithms under event-triggered mechanisms are introduced. Part IV consists of two chapters, in which fusion estimation for systems with non-Gaussian but heavy-tailed noises are introduced. The book is primarily intended for researchers and engineers in the field of data fusion and state estimation. It also benefits for both graduate and undergraduate students who are interested in target tracking, navigation, networked control, etc.
iHorizon-Enabled Energy Management for Electrified Vehicles proposes a realistic solution that assumes only scarce information is available prior to the start of a journey and that limited computational capability can be allocated for energy management. This type of framework exploits the available resources and closely emulates optimal results that are generated with an offline global optimal algorithm. In addition, the authors consider the present and future of the automotive industry and the move towards increasing levels of automation. Driver vehicle-infrastructure is integrated to address the high level of interdependence of hybrid powertrains and to comply with connected vehicle infrastructure. This book targets upper-division undergraduate students and graduate students interested in control applied to the automotive sector, including electrified powertrains, ADAS features, and vehicle automation. - Addresses the level of integration of electrified powertrains - Presents the state-of-the-art of electrified vehicle energy control - Offers a novel concept able to perform dynamic speed profile and energy demand prediction
Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimation with a focus on applying these techniques to real systems. Other features include: * Problems that apply theoretical material to real-world applications * In-depth coverage of the Interacting Multiple Model (IMM) estimator * Companion DynaEst(TM) software for MATLAB(TM) implementation of Kalman filters and IMM estimators * Design guidelines for tracking filters Suitable for graduate engineering students and engineers working in remote sensors and tracking, Estimation with Applications to Tracking and Navigation provides expert coverage of this important area.
When choosing the technology options to develop a wireless sensor network (WSN), it is vital that their performance levels can be assessed for the type of application intended. This book describes the different technology options – MAC protocols, routing protocols, localisation and data fusion techniques – and provides the means to numerically measure their performance, whether by simulation, mathematical models or experimental test beds. Case studies, based on the authors' direct experience of implementing wireless sensor networks, describe the design methodology and the type of measurements used, together with samples of the performance measurements attained. Wireless Sensor and Actuator Networks will enable you to answer vital questions such as: - How long will my network remain alive given the amount of sensing required of it? - For how long should I set the sleeping state of my motes? - How many sensors should I distribute to meet the expected requirements of the application? - What type of throughput should I expect as a function of the number of nodes deployed and the radio interface chosen (whether it be Bluetooth or Zigbee)? - How is the Packet Error Rate of my Zigbee motes affected by the selection of adjacent frequency sub bands in the ISM 2.4GHz band? - How is the localisation precision dependant on the number of nodes deployed in a corridor? Communications and signal processing engineers, researchers and graduate students working in wireless sensor networks will find this book an invaluable practical guide to this important technology. "This book gives a proper balance between theory and application; it is a book for those R&D engineers that want to appreciate both why, how and in which domains Wireless Sensor Networks can be best applied." --Fabio Bellifemine, Telecom Italia "This book is a thorough and accessible exposition on wireless sensor networks with a good balance between theory and practice; it is valuable for both students and practicing engineers, and is an essential addition for engineering libraries." --Professor Moe Win, Associate Professor at the Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology - Only book to examine wireless sensor network technologies and assess their performance capabilities against possible applications - Enables the engineer to choose the technology that will give the best performance for the intended application - Case studies, based on the authors' direct experience of implementing wireless sensor networks, describe the design methodology and the type of measurements used, together with samples of the performance measurements attained
The three-volume set CCIS 923, CCIS 924, and CCIS 925 constitutes the thoroughly refereed proceedings of the First International Conference on Intelligent Manufacturing and Internet of Things, and of the 5th International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2018, held in Chongqing, China, in September 2018. The 135 revised full papers presented were carefully reviewed and selected from over 385 submissions.The papers of this volume are organized in topical sections on: digital manufacturing; industrial product design; logistics, production and operation management; manufacturing material; manufacturing optimization; manufacturing process; mechanical transmission system; robotics.
This book provides a comprehensive overview of wireless technologies for industrial network systems. The authors first describe the concept of industrial network systems and their application to industrial automation. They then go on to cover the role of sensing and control in industrial network systems, and the challenge of sensing and control in the industrial wireless environment. Then, the existing techniques for resource efficiency information transmission are introduced and studied. Afterward, the authors introduce sensing and control-oriented transmission for industrial network systems, which take advantage of spatial diversity gain to overcome the interference and fading, which in turn improves the transmission reliability without expending extra spectrum resources and enlarging the transmission delay. Subsequently, edge assisted efficient transmission schemes are introduced, which integrate the capacities of communication, computing, and control to relieve the contradiction of resource limitation and massive data. Finally, the authors discuss open research issues and future works about information transmission in industrial network systems.
A handbook on recent advancements and the state of the art in array processing and sensor Networks Handbook on Array Processing and Sensor Networks provides readers with a collection of tutorial articles contributed by world-renowned experts on recent advancements and the state of the art in array processing and sensor networks. Focusing on fundamental principles as well as applications, the handbook provides exhaustive coverage of: wavelets; spatial spectrum estimation; MIMO radio propagation; robustness issues in sensor array processing; wireless communications and sensing in multi-path environments using multi-antenna transceivers; implicit training and array processing for digital communications systems; unitary design of radar waveform diversity sets; acoustic array processing for speech enhancement; acoustic beamforming for hearing aid applications; undetermined blind source separation using acoustic arrays; array processing in astronomy; digital 3D/4D ultrasound imaging technology; self-localization of sensor networks; multi-target tracking and classification in collaborative sensor networks via sequential Monte Carlo; energy-efficient decentralized estimation; sensor data fusion with application to multi-target tracking; distributed algorithms in sensor networks; cooperative communications; distributed source coding; network coding for sensor networks; information-theoretic studies of wireless networks; distributed adaptive learning mechanisms; routing for statistical inference in sensor networks; spectrum estimation in cognitive radios; nonparametric techniques for pedestrian tracking in wireless local area networks; signal processing and networking via the theory of global games; biochemical transport modeling, estimation, and detection in realistic environments; and security and privacy for sensor networks. Handbook on Array Processing and Sensor Networks is the first book of its kind and will appeal to researchers, professors, and graduate students in array processing, sensor networks, advanced signal processing, and networking.
Stochastic Control and Filtering over Constrained Communication Networks presents up-to-date research developments and novel methodologies on stochastic control and filtering for networked systems under constrained communication networks. It provides a framework of optimal controller/filter design, resilient filter design, stability and performance analysis for the systems considered, subject to various kinds of communication constraints, including signal-to-noise constraints, bandwidth constraints, and packet drops. Several techniques are employed to develop the controllers and filters desired, including: recursive Riccati equations; matrix decomposition; optimal estimation theory; and mathematical optimization methods. Readers will benefit from the book’s new concepts, models and methodologies that have practical significance in control engineering and signal processing. Stochastic Control and Filtering over Constrained Communication Networks is a practical research reference for engineers dealing with networked control and filtering problems. It is also of interest to academics and students working in control and communication networks.