Distributed Coordination of Multi-agent Networks

Distributed Coordination of Multi-agent Networks

Author: Wei Ren

Publisher: Springer Science & Business Media

Published: 2010-11-30

Total Pages: 312

ISBN-13: 0857291696

DOWNLOAD EBOOK

Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders.


Multiagent Systems

Multiagent Systems

Author: Magdi S. Mahmoud

Publisher: CRC Press

Published: 2020-03-20

Total Pages: 330

ISBN-13: 1000078108

DOWNLOAD EBOOK

Multiagent systems (MAS) are one of the most exciting and the fastest growing domains in the intelligent resource management and agent-oriented technology, which deals with modeling of autonomous decisions making entities. Recent developments have produced very encouraging results in the novel approach of handling multiplayer interactive systems. In particular, the multiagent system approach is adapted to model, control, manage or test the operations and management of several system applications including multi-vehicles, microgrids, multi-robots, where agents represent individual entities in the network. Each participant is modeled as an autonomous participant with independent strategies and responses to outcomes. They are able to operate autonomously and interact pro-actively with their environment. In recent works, the problem of information consensus is addressed, where a team of vehicles communicate with each other to agree on key pieces of information that enable them to work together in a coordinated fashion. The problem is challenging because communication channels have limited range and there are possibilities of fading and dropout. The book comprises chapters on synchronization and consensus in multiagent systems. It shows that the joint presentation of synchronization and consensus enables readers to learn about similarities and differences of both concepts. It reviews the cooperative control of multi-agent dynamical systems interconnected by a communication network topology. Using the terminology of cooperative control, each system is endowed with its own state variable and dynamics. A fundamental problem in multi-agent dynamical systems on networks is the design of distributed protocols that guarantee consensus or synchronization in the sense that the states of all the systems reach the same value. It is evident from the results that research in multiagent systems offer opportunities for further developments in theoretical, simulation and implementations. This book attempts to fill this gap and aims at presenting a comprehensive volume that documents theoretical aspects and practical applications.


Cooperative Control of Distributed Multi-Agent Systems

Cooperative Control of Distributed Multi-Agent Systems

Author: Jeff Shamma

Publisher: John Wiley & Sons

Published: 2008-02-28

Total Pages: 452

ISBN-13: 9780470724194

DOWNLOAD EBOOK

The paradigm of ‘multi-agent’ cooperative control is the challenge frontier for new control system application domains, and as a research area it has experienced a considerable increase in activity in recent years. This volume, the result of a UCLA collaborative project with Caltech, Cornell and MIT, presents cutting edge results in terms of the “dimensions” of cooperative control from leading researchers worldwide. This dimensional decomposition allows the reader to assess the multi-faceted landscape of cooperative control. Cooperative Control of Distributed Multi-Agent Systems is organized into four main themes, or dimensions, of cooperative control: distributed control and computation, adversarial interactions, uncertain evolution and complexity management. The military application of autonomous vehicles systems or multiple unmanned vehicles is primarily targeted; however much of the material is relevant to a broader range of multi-agent systems including cooperative robotics, distributed computing, sensor networks and data network congestion control. Cooperative Control of Distributed Multi-Agent Systems offers the reader an organized presentation of a variety of recent research advances, supporting software and experimental data on the resolution of the cooperative control problem. It will appeal to senior academics, researchers and graduate students as well as engineers working in the areas of cooperative systems, control and optimization.


Distributed Consensus in Multi-vehicle Cooperative Control

Distributed Consensus in Multi-vehicle Cooperative Control

Author: Wei Ren

Publisher: Springer Science & Business Media

Published: 2007-10-27

Total Pages: 315

ISBN-13: 1848000154

DOWNLOAD EBOOK

Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.


Multi-agent Optimization

Multi-agent Optimization

Author: Angelia Nedić

Publisher: Springer

Published: 2018-11-01

Total Pages: 317

ISBN-13: 3319971425

DOWNLOAD EBOOK

This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.


Distributed Sensor Networks

Distributed Sensor Networks

Author: Victor Lesser

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 377

ISBN-13: 1461503639

DOWNLOAD EBOOK

Distributed Sensor Networks is the first book of its kind to examine solutions to this problem using ideas taken from the field of multiagent systems. The field of multiagent systems has itself seen an exponential growth in the past decade, and has developed a variety of techniques for distributed resource allocation. Distributed Sensor Networks contains contributions from leading, international researchers describing a variety of approaches to this problem based on examples of implemented systems taken from a common distributed sensor network application; each approach is motivated, demonstrated and tested by way of a common challenge problem. The book focuses on both practical systems and their theoretical analysis, and is divided into three parts: the first part describes the common sensor network challenge problem; the second part explains the different technical approaches to the common challenge problem; and the third part provides results on the formal analysis of a number of approaches taken to address the challenge problem.


Introduction to Hybrid Intelligent Networks

Introduction to Hybrid Intelligent Networks

Author: Zhi-Hong Guan

Publisher: Springer

Published: 2019-02-01

Total Pages: 295

ISBN-13: 3030021610

DOWNLOAD EBOOK

This book covers the fundamental principles, new theories and methodologies, and potential applications of hybrid intelligent networks. Chapters focus on hybrid neural networks and networked multi-agent networks, including their communication, control and optimization synthesis. This text also provides a succinct but useful guideline for designing neural network-based hybrid artificial intelligence for brain-inspired computation systems and applications in the Internet of Things. Artificial Intelligence has developed into a deep research field targeting robots with more brain-inspired perception, learning, decision-making abilities, etc. This text devoted to a tutorial on hybrid intelligent networks that have been identified in nature and engineering, especially in the brain, modeled by hybrid dynamical systems and complex networks, and have shown potential application to brain-inspired intelligence. Included in this text are impulsive neural networks, neurodynamics, multiagent networks, hybrid dynamics analysis, collective dynamics, as well as hybrid communication, control and optimization methods. Graduate students who are interested in artificial intelligence and hybrid intelligence, as well as professors and graduate students who are interested in neural networks and multiagent networks will find this textbook a valuable resource. AI engineers and consultants who are working in wireless communications and networking will want to buy this book. Also, professional and academic institutions in universities and Mobile vehicle companies and engineers and managers who concern humans in the loop of IoT will also be interested in this book.


Distributed Adaptive Consensus Control of Uncertain Multi-Agent Systems

Distributed Adaptive Consensus Control of Uncertain Multi-Agent Systems

Author: Wei Wang

Publisher: CRC Press

Published: 2024-08-15

Total Pages: 241

ISBN-13: 1040093833

DOWNLOAD EBOOK

Multi-agent systems are special networked systems full of research interest and practical sense, which are abundant in real life, ranging from mobile robot networks, intelligent transportation management, to multiple spacecraft, surveillance and monitoring. Consensus control is one of the most typical and hot research issues for multi-agent systems. Distributed Adaptive Consensus Control of Uncertain Multi-agent Systems provides innovative technologies to design and analyze distributed adaptive consensus for multi-agent systems with model uncertainties. Based on the basic graph theory and adaptive backstepping control, this monograph: · Describes the state of the art on distributed adaptive control, finite-time consensus control and event-triggered consensus control · Studies distributed adaptive consensus under directed communication graph condition: the methods with linearly parametric reference, hierarchical decomposition, and design of auxiliary filers · Explores adaptive finite-time consensus for uncertain nonlinear systems · Considers distributed adaptive consensus with event-triggered communication via state feedback and output feedback · Investigates distributed adaptive formation control of nonholonomic mobile robots with experimental verification · Provides distributed adaptive attitude synchronization control schemes for multiple spacecraft with event-triggered communication Distributed Adaptive Consensus Control of Uncertain Multi-agent Systems can help engineering students and professionals to efficiently learn distributed adaptive control design tool for handling uncertain multi-agent systems with directed communication graph, guaranteeing finite-time convergence and saving communication resources.


Graph Theoretic Methods in Multiagent Networks

Graph Theoretic Methods in Multiagent Networks

Author: Mehran Mesbahi

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 424

ISBN-13: 1400835356

DOWNLOAD EBOOK

This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA


Coordination of Distributed Problem Solvers

Coordination of Distributed Problem Solvers

Author: Edmund H. Durfee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 278

ISBN-13: 1461316995

DOWNLOAD EBOOK

As artificial intelligence (AI) is applied to more complex problems and a wider set of applications, the ability to take advantage of the computational power of distributed and parallel hardware architectures and to match these architec tures with the inherent distributed aspects of applications (spatial, functional, or temporal) has become an important research issue. Out of these research concerns, an AI subdiscipline called distributed problem solving has emerged. Distributed problem-solving systems are broadly defined as loosely-coupled, distributed networks of semi-autonomous problem-solving agents that perform sophisticated problem solving and cooperatively interact to solve problems. N odes operate asynchronously and in parallel with limited internode commu nication. Limited internode communication stems from either inherent band width limitations of the communication medium or from the high computa tional cost of packaging and assimilating information to be sent and received among agents. Structuring network problem solving to deal with consequences oflimited communication-the lack of a global view and the possibility that the individual agents may not have all the information necessary to accurately and completely solve their subproblems-is one of the major focuses of distributed problem-solving research. It is this focus that also is one of the important dis tinguishing characteristics of distributed problem-solving research that sets it apart from previous research in AI.