Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health

Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health

Author: Shadi Albarqouni

Publisher: Springer Nature

Published: 2022-10-08

Total Pages: 215

ISBN-13: 3031185234

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third MICCAI Workshop on Distributed, Collaborative, and Federated Learning, DeCaF 2022, and the Second MICCAI Workshop on Affordable AI and Healthcare, FAIR 2022, held in conjunction with MICCAI 2022, in Singapore in September 2022. FAIR 2022 was held as a hybrid event. DeCaF 2022 accepted 14 papers from the 18 submissions received. The workshop aims at creating a scientific discussion focusing on the comparison, evaluation, and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases or where information privacy is a priority. For FAIR 2022, 4 papers from 9 submissions were accepted for publication. The topics of the accepted submissions focus on deep ultrasound segmentation, portable OCT image quality enhancement, self-attention deep networks and knowledge distillation in low-regime setting.


Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops

Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops

Author: M. Emre Celebi

Publisher: Springer Nature

Published: 2023-11-30

Total Pages: 397

ISBN-13: 3031474015

DOWNLOAD EBOOK

This double volume set LNCS 14393-14394 constitutes the proceedings from the workshops held at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023 Workshops, which took place in Vancouver, BC, Canada, in October 2023. The 54 full papers together with 14 short papers presented in this volume were carefully reviewed and selected from 123 submissions from all workshops. The papers of the workshops are presenting the topical sections: Eighth International Skin Imaging Collaboration Workshop (ISIC 2023) First Clinically-Oriented and Responsible AI for Medical Data Analysis (Care-AI 2023) Workshop First International Workshop on Foundation Models for Medical Artificial General Intelligence (MedAGI 2023) Fourth Workshop on Distributed, Collaborative and Federated Learning (DeCaF 2023) First MICCAI Workshop on Time-Series Data Analytics and Learning First MICCAI Workshop on Lesion Evaluation and Assessment with Follow-Up (LEAF) AI For Treatment Response Assessment and predicTion Workshop (AI4Treat 2023) Fourth International Workshop on Multiscale Multimodal Medical Imaging (MMMI 2023) Second International Workshop on Resource-Effcient Medical Multimodal Medical Imaging Image Analysis (REMIA 2023)


Federated Learning

Federated Learning

Author: Qiang Yang

Publisher: Springer Nature

Published: 2020-11-25

Total Pages: 291

ISBN-13: 3030630765

DOWNLOAD EBOOK

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”


Federated Learning and Privacy-Preserving in Healthcare AI

Federated Learning and Privacy-Preserving in Healthcare AI

Author: Lilhore, Umesh Kumar

Publisher: IGI Global

Published: 2024-05-02

Total Pages: 373

ISBN-13:

DOWNLOAD EBOOK

The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI.


Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Author: Adam Bohr

Publisher: Academic Press

Published: 2020-06-21

Total Pages: 385

ISBN-13: 0128184396

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data


Medical Imaging Informatics

Medical Imaging Informatics

Author: Alex A.T. Bui

Publisher: Springer Science & Business Media

Published: 2009-12-01

Total Pages: 454

ISBN-13: 1441903852

DOWNLOAD EBOOK

Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.


TinyML

TinyML

Author: Pete Warden

Publisher: O'Reilly Media

Published: 2019-12-16

Total Pages: 504

ISBN-13: 1492052019

DOWNLOAD EBOOK

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size