Dissipative Systems in Quantum Optics

Dissipative Systems in Quantum Optics

Author: R. Bonifacio

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 158

ISBN-13: 3642817173

DOWNLOAD EBOOK

In studying the radiation-matter interaction, one can take two different approaches. The first is typical of spectroscopy: one considers the interaction between radi ation and a single atom, i. e. , one studies those phenomena in which the presence of other atoms is irrelevant. The other attitude consists, in contrast, in studying those phenomena which arise just from the simultaneous presence of many atoms. In fact, all the atoms interact with the same electromagnetic field; under suitable conditions, this situation creates strong atom-atom correlations, which in turn give rise to a cooperative behavior of the system as a whole. Cooperative means that the overall behavior is quite different from the superposition of the effects arising from single atoms and is completely unpredictable if one neglects the coup ling between the atoms induced by their common electromagnetic field. This book contains five complete and up-to-date contributions on the theory and experiments of three coherence effects in radiation-matter interaction: resonance fluorescences, optical bistability, and superfluorescence. They have raised in creasing interest in recent years from both a fundamental and an applicative view point. Even if their phenomenology appears completely different, these effects be long in the same book because they are striking examples of open systems driven far from thermal equilibrium, as those considered in Haken's synergetics and in Prigogine's theory of dissipative structures. This aspect is discussed in the in troducting chapter, in which we outline the basic physics and the essential features which unify these three effects.


Quantum Dissipative Systems

Quantum Dissipative Systems

Author: Ulrich Weiss

Publisher: World Scientific

Published: 2012

Total Pages: 587

ISBN-13: 9814374911

DOWNLOAD EBOOK

Starting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book -- originally published in 1990 and republished in 1999 and and 2008 as enlarged second and third editions -- delves significantly deeper than ever before into the fundamental concepts, methods and applications of quantum dissipative systems.This fourth edition provides a self-contained and updated account of the quantum mechanics of open systems and offers important new material including the most recent developments. The subject matter has been expanded by about fifteen percent. Many chapters have been completely rewritten to better cater to both the needs of newcomers to the field and the requests of the advanced readership. Two chapters have been added that account for recent progress in the field. This book should be accessible to all graduate students in physics. Researchers will find this a rich and stimulating source.


Classical And Quantum Dissipative Systems (Second Edition)

Classical And Quantum Dissipative Systems (Second Edition)

Author: Mohsen Razavy

Publisher: World Scientific

Published: 2017-02-27

Total Pages: 593

ISBN-13: 9813207930

DOWNLOAD EBOOK

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.


Quantum Optics

Quantum Optics

Author: D.F. Walls

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 356

ISBN-13: 3642795048

DOWNLOAD EBOOK

Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.


Semiconductor Quantum Optics

Semiconductor Quantum Optics

Author: Mackillo Kira

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 658

ISBN-13: 1139502514

DOWNLOAD EBOOK

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.


Dissipative Quantum Mechanics of Nanostructures

Dissipative Quantum Mechanics of Nanostructures

Author: Andrei D. Zaikin

Publisher: CRC Press

Published: 2019-05-24

Total Pages: 584

ISBN-13: 1000024202

DOWNLOAD EBOOK

Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.


Dissipative Solitons

Dissipative Solitons

Author: Nail Akhmediev

Publisher: Springer Science & Business Media

Published: 2005-04-25

Total Pages: 472

ISBN-13: 9783540233732

DOWNLOAD EBOOK

This volume is devoted to the exciting topic of dissipative solitons, i.e. pulses or spatially localised waves in systems exhibiting gain and loss. Examples are laser systems, nonlinear resonators and optical transmission lines. The physical principles and mathematical concepts are explained in a clear and concise way, suitable for students and young researchers. The similarities and differences in the notion of a soliton between dissipative systems and Hamiltonian and integrable systems are discussed, and many examples are given. The contributions are written by the world's leading experts in the field, making it a unique exposition of this emerging topic.


Quantum Dissipative Systems (Fourth Edition)

Quantum Dissipative Systems (Fourth Edition)

Author: Ulrich Weiss

Publisher: World Scientific

Published: 2012-03-05

Total Pages: 587

ISBN-13: 981445298X

DOWNLOAD EBOOK

Starting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book — originally published in 1990 and republished in 1999 and and 2008 as enlarged second and third editions — delves significantly deeper than ever before into the fundamental concepts, methods and applications of quantum dissipative systems.This fourth edition provides a self-contained and updated account of the quantum mechanics of open systems and offers important new material including the most recent developments. The subject matter has been expanded by about fifteen percent. Many chapters have been completely rewritten to better cater to both the needs of newcomers to the field and the requests of the advanced readership. Two chapters have been added that account for recent progress in the field. This book should be accessible to all graduate students in physics. Researchers will find this a rich and stimulating source.


Quantum Optics

Quantum Optics

Author: Marlan O. Scully

Publisher: Cambridge University Press

Published: 1997-09-04

Total Pages: 664

ISBN-13: 9780521435956

DOWNLOAD EBOOK

An in-depth and wide-ranging introduction to the field of quantum optics.


Quantum Dissipative Systems (Fifth Edition)

Quantum Dissipative Systems (Fifth Edition)

Author: Ulrich Weiss

Publisher: World Scientific

Published: 2021-09-21

Total Pages: 607

ISBN-13: 9811241511

DOWNLOAD EBOOK

This comprehensive textbook provides the fundamental concepts and methods of dissipative quantum mechanics and related issues in condensed matter physics starting from first principles. It deals with the phenomena and theory of decoherence, relaxation and dissipation in quantum mechanics that arise from the random exchange of energy with the environment. Major theoretical advances in combination with stunning experimental achievements and the arising perspective for quantum computing have brightened the field and brought it to the attention of the general community in natural sciences. Expertise in dissipative quantum mechanics is by now beneficial in a broad sphere.This book — originally published in 1992 and republished as enlarged and updated second, third and fourth edition in 1999, 2008, and 2012 — dives even deeper into the fundamental concepts, methods and applications of quantum dissipation. The fifth edition provides a self-contained and updated account of the quantum mechanics and quantum statistics of open systems. The subject matter of the book has been thoroughly revised to better comply with the needs of newcomers and the demands of the advanced readership. Most of the chapters are rewritten to enhance clarity and topicality. Four new chapters covering recent developments in the field have been added. There are about 600 references. This book is intended for use by advanced undergraduate and graduate students in physics, and for researchers active in the field. They will find the monograph as a rich and stimulating source.