Dispersive Equations and Nonlinear Waves

Dispersive Equations and Nonlinear Waves

Author: Herbert Koch

Publisher: Springer

Published: 2014-07-14

Total Pages: 310

ISBN-13: 3034807368

DOWNLOAD EBOOK

The first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation. The energy-critical nonlinear Schrödinger equation, global solutions to the defocusing problem, and scattering are the focus of the second part. Using this concrete example, it walks the reader through the induction on energy technique, which has become the essential methodology for tackling large data critical problems. This includes refined/inverse Strichartz estimates, the existence and almost periodicity of minimal blow up solutions, and the development of long-time Strichartz inequalities. The third part describes wave and Schrödinger maps. Starting by building heuristics about multilinear estimates, it provides a detailed outline of this very active area of geometric/dispersive PDE. It focuses on concepts and ideas and should provide graduate students with a stepping stone to this exciting direction of research.​


Linear and Nonlinear Waves

Linear and Nonlinear Waves

Author: G. B. Whitham

Publisher: John Wiley & Sons

Published: 2011-10-18

Total Pages: 660

ISBN-13: 1118031202

DOWNLOAD EBOOK

Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.


Nonlinear Dispersive Waves

Nonlinear Dispersive Waves

Author: Mark J. Ablowitz

Publisher: Cambridge University Press

Published: 2011-09-08

Total Pages: 363

ISBN-13: 1139503480

DOWNLOAD EBOOK

The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.


Nonlinear Dispersive Equations

Nonlinear Dispersive Equations

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 394

ISBN-13: 0821841432

DOWNLOAD EBOOK

"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".


Nonlinear Dispersive Equations

Nonlinear Dispersive Equations

Author: Jaime Angulo Pava

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 272

ISBN-13: 0821848976

DOWNLOAD EBOOK

This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.


Nonlinear Periodic Waves and Their Modulations

Nonlinear Periodic Waves and Their Modulations

Author: Anatoli? Mikha?lovich Kamchatnov

Publisher: World Scientific

Published: 2000

Total Pages: 399

ISBN-13: 981024407X

DOWNLOAD EBOOK

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.


Introduction to Nonlinear Dispersive Equations

Introduction to Nonlinear Dispersive Equations

Author: Felipe Linares

Publisher: Springer

Published: 2014-12-15

Total Pages: 308

ISBN-13: 1493921819

DOWNLOAD EBOOK

This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.


Nonlinear Waves in Integrable and Non-integrable Systems

Nonlinear Waves in Integrable and Non-integrable Systems

Author: Jianke Yang

Publisher: SIAM

Published: 2010-12-02

Total Pages: 452

ISBN-13: 0898717051

DOWNLOAD EBOOK

Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).


Nonlinear Dynamics

Nonlinear Dynamics

Author: Muthusamy Lakshmanan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 628

ISBN-13: 3642556884

DOWNLOAD EBOOK

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.


Nonlinear Waves

Nonlinear Waves

Author: Lokenath Debnath

Publisher: CUP Archive

Published: 1983-12-30

Total Pages: 376

ISBN-13: 9780521254687

DOWNLOAD EBOOK

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.