Discrete Time Branching Processes in Random Environment

Discrete Time Branching Processes in Random Environment

Author: Götz Kersting

Publisher: John Wiley & Sons

Published: 2017-11-29

Total Pages: 306

ISBN-13: 1786302527

DOWNLOAD EBOOK

Branching processes are stochastic processes which represent the reproduction of particles, such as individuals within a population, and thereby model demographic stochasticity. In branching processes in random environment (BPREs), additional environmental stochasticity is incorporated, meaning that the conditions of reproduction may vary in a random fashion from one generation to the next. This book offers an introduction to the basics of BPREs and then presents the cases of critical and subcritical processes in detail, the latter dividing into weakly, intermediate, and strongly subcritical regimes.


Discrete Time Branching Processes in Random Environment

Discrete Time Branching Processes in Random Environment

Author: Götz Kersting

Publisher: John Wiley & Sons

Published: 2017-11-01

Total Pages: 312

ISBN-13: 1119473772

DOWNLOAD EBOOK

Branching processes are stochastic processes which represent the reproduction of particles, such as individuals within a population, and thereby model demographic stochasticity. In branching processes in random environment (BPREs), additional environmental stochasticity is incorporated, meaning that the conditions of reproduction may vary in a random fashion from one generation to the next. This book offers an introduction to the basics of BPREs and then presents the cases of critical and subcritical processes in detail, the latter dividing into weakly, intermediate, and strongly subcritical regimes.


Branching Processes in Random Environment

Branching Processes in Random Environment

Author: Kersting Gotz

Publisher: Iste Press - Elsevier

Published: 2017-10-01

Total Pages: 250

ISBN-13: 9781785482427

DOWNLOAD EBOOK

There are several books devoted to the theory of branching processes. However, the theory of branching processes in random environment is rather pour reflected in these books. During the last two decades an essential progress was achieved on this field in particular, owing to the efforts of the authors of the proposal. We develop in this book a unique and new approach to study branching processes in random environment To compare properties of branching processes in random environment with properties of ordinary random walks This approach, combined with the properties of random walks conditioned to stay nonnegative or negative allows to find the probability of survival of the critical and subcritical branching processes in random environment as well as Yaglom-type limit theorems for the mentioned classes of processes


Branching Processes

Branching Processes

Author: Patsy Haccou

Publisher: Cambridge University Press

Published: 2005-05-19

Total Pages: 342

ISBN-13: 9780521832205

DOWNLOAD EBOOK

This book covers the mathematical idea of branching processes, and tailors it for a biological audience.


Workshop on Branching Processes and Their Applications

Workshop on Branching Processes and Their Applications

Author: Miguel González

Publisher: Springer Science & Business Media

Published: 2010-03-02

Total Pages: 304

ISBN-13: 3642111564

DOWNLOAD EBOOK

One of the charms of mathematics is the contrast between its generality and its applicability to concrete, even everyday, problems. Branching processes are typical in this. Their niche of mathematics is the abstract pattern of reproduction, sets of individuals changing size and composition through their members reproducing; in other words, what Plato might have called the pure idea behind demography, population biology, cell kinetics, molecular replication, or nuclear ?ssion, had he known these scienti?c ?elds. Even in the performance of algorithms for sorting and classi?cation there is an inkling of the same pattern. In special cases, general properties of the abstract ideal then interact with the physical or biological or whatever properties at hand. But the population, or bran- ing, pattern is strong; it tends to dominate, and here lies the reason for the extreme usefulness of branching processes in diverse applications. Branching is a clean and beautiful mathematical pattern, with an intellectually challenging intrinsic structure, and it pervades the phenomena it underlies.


Stochastic Population and Epidemic Models

Stochastic Population and Epidemic Models

Author: Linda J. S. Allen

Publisher: Springer

Published: 2015-08-20

Total Pages: 55

ISBN-13: 331921554X

DOWNLOAD EBOOK

This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics at Texas Tech University, USA.


Branching Processes in Biology

Branching Processes in Biology

Author: Marek Kimmel

Publisher: Springer Science & Business Media

Published: 2006-05-26

Total Pages: 242

ISBN-13: 0387216391

DOWNLOAD EBOOK

This book introduces biological examples of Branching Processes from molecular and cellular biology as well as from the fields of human evolution and medicine and discusses them in the context of the relevant mathematics. It provides a useful introduction to how the modeling can be done and for what types of problems branching processes can be used.


Random Graph Dynamics

Random Graph Dynamics

Author: Rick Durrett

Publisher: Cambridge University Press

Published: 2010-05-31

Total Pages: 203

ISBN-13: 1139460889

DOWNLOAD EBOOK

The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.


Probability on Graphs

Probability on Graphs

Author: Geoffrey Grimmett

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 279

ISBN-13: 1108542999

DOWNLOAD EBOOK

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.