This book takes a fresh approach to the teaching of discrete symmetries which are central to fundamental physics: mirror symmetry, matter/anti-matter symmetry, and time reversal. It is self-contained and includes detailed discussions of relevant experiments - conveying some of the fascination and intellectual challenges of experimental physics.
Electric dipole moments (EDMs) have interested physicists since 1950, when it was first suggested that there was no experimental evidence that nuclear forces are symmetric under parity (P) transformation. This question was regarded as speculative because the existence of an EDM, in addition to P violation, requires a violation of time-reversal (T) symmetry. In 1964 it was discovered that the invariance under CP transformation, which combines charge conjugation (C) with parity, is violated in K-meson decays. This provided a new incentive for EDM searches. Since the combined operations of CPT are expected to leave a system invariant, breakdown of CP invariance should be accompanied by a violation of time-reversal symmetry. Thus there is a reason to expect that EDMs should exist at some level. The original neutron EDM experiments were later supplemented with checks of T invariance in atoms and molecules. These investigations are pursued now by many groups. Over the years, the upper limit on the neutron EDM has been improved by seven orders of magnitude, and the upper limit on the electron EDM obtained in atomic experiments is even more strict.
The violation of charge-conjugation and parity symmetries is a leading area of research in particle and nuclear physics, with important implications for understanding the generation of matter in the universe. This book provides a self-contained introduction and is designed to bring beginning researchers to the forefront of the field.
This book is a concise yet thorough study of charge-parity (CP) asymmetry, particularly within the B meson system. Beginning with an introduction to the topic, the book covers discrete symmetry, antiparticles and CP symmetry before moving on to CP violations in both the quark sector and the B meson system. It also examines the accelerators and experiments involved in unveiling the asymmetry within the weak interactions, and finishes with an outlook on investigations beyond the Standard Model. The book offers a fascinating insight into the research of CP asymmetry and is an essential reference for experimental physicists and other researchers related to the field. Key Features Comprehensive study of charge-parity (CP) asymmetry within the B meson system Examines accelerators and the experiments that help to unveil the asymmetry within the weak interactions Offers an outlook on investigations in the field beyond the Standard Model An essential reference for experimental physicists and other researchers related to the field
Madam Chien Shiung Wu, the great physicist of 20th century physics, passed away in February 1997. Born in 1912, she became a towering scientific figure in the second half of the century. Madam Wu and Madame Curie will forever be commemorated as the two great female physicists of the 20th century. On 16-18 August 1997, scientists from around the globe, many of them distinguished in their own right, gathered in Nanjing, where Madam Wu spent her undergraduate years to celebrate the glorious achievements of the great lady.This important volume constitutes the proceedings of the conference. The main advances in fundamental symmetry, nuclear, particle and general physics since parity symmetry breaking and the prospects at the turn of the century are addressed by world-renowned experts. The historical developments in the studies of the β-decay mechanism, vector current conservation, parity, charge conjugation and time reversal nonconservation are vividly depicted by Madam Wu's close friends, including several Nobel laureates.
This lecture note provides a tutorial review of non-Abelian discrete groups and presents applications to particle physics where discrete symmetries constitute an important principle for model building. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics—particularly model building beyond the standard model—non-Abelian discrete symmetries have been applied particularly to understand the three-generation flavor structure. The non-Abelian discrete symmetries are indeed considered to be the most attractive choice for a flavor sector: Model builders have tried to derive experimental values of quark and lepton masses, mixing angles and CP phases on the assumption of non-Abelian discrete flavor symmetries of quarks and leptons, yet lepton mixing has already been intensively discussed in this context as well. Possible origins of the non-Abelian discrete symmetry for flavors are another topic of interest, as they can arise from an underlying theory, e.g., the string theory or compactification via orbifolding as geometrical symmetries such as modular symmetries, thereby providing a possible bridge between the underlying theory and corresponding low-energy sector of particle physics. The book offers explicit introduction to the group theoretical aspects of many concrete groups, and readers learn how to derive conjugacy classes, characters, representations, tensor products, and automorphisms for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest. Further, CP symmetry and modular symmetry are also presented.
Dealing with the CP violation, from quarks to leptons, this publication reviews the field, from both the theoretical and experimental point of view, while planning for the experimentation at LHC and considering possible facilities for kaon, B meson and neutrino physics.
The exciting experiments of the BABAR and BELLE collaborations have now proven violation of CP symmetry in the neutral B system. This has renewed strong interest in the physics of CP violation. Novel experimental techniques and new highly intense neutron sources are now becoming available to further test the related time reversal symmetry. They will substantially lower the current limit on the neutron electric dipole moment and hence open up new tests of theoretical concepts beyond the Standard Model. These are strongly required to explain the decisive excess of matter versus antimatter in our Universe. There is a de?nite need to communicate these exciting developments to younger scientists, and therefore we organized a summer school in October 2000 on “CP Violation and Related Topics”, which was held in Prerow, a small Baltic Sea resort. These Lecture Notes were inspired by the vivid - terest of the participants, and I am grateful to the authors, who faced the unexpected and delivered all the material for an up-to-date introduction to this broad ?eld. It is a great pleasure for me to warmly thank the Co-organizers of the summer school, Henning Schr ̈oder, Thomas Mannel, Klaus R. Schubert and my colleague Roland Waldi. Also I would like to express my sincere thanks to the Volkswagen-Stiftung for their ?nancial support of this inspiring summer school.