Packed with practical tips and techniques for solving probability problems Increase your chances of acing that probability exam -- or winning at the casino! Whether you're hitting the books for a probability or statistics course or hitting the tables at a casino, working out probabilities can be problematic. This book helps you even the odds. Using easy-to-understand explanations and examples, it demystifies probability -- and even offers savvy tips to boost your chances of gambling success! Discover how to * Conquer combinations and permutations * Understand probability models from binomial to exponential * Make good decisions using probability * Play the odds in poker, roulette, and other games
This Set Contains: Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discrete Multivariate Distributions by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Univariate Discrete Distributions, 3rd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discover the latest advances in discrete distributions theory The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method. A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions. Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including: Families of discrete distributions Binomial distribution Poisson distribution Negative binomial distribution Hypergeometric distributions Logarithmic and Lagrangian distributions Mixture distributions Stopped-sum distributions Matching, occupancy, runs, and q-series distributions Parametric regression models and miscellanea Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications. With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.
This book provides a comprehensive study of the bivariate discrete distributions and details the computer simulation techniques for the distributions. It develops distributions using sampling schemes, explores the role of compounding, and covers Waring distribution for use in accident theory.
A unique approach illustrating discrete distribution theory through combinatorial methods This book provides a unique approach by presenting combinatorial methods in tandem with discrete distribution theory. This method, particular to discreteness, allows readers to gain a deeper understanding of theory by using applications to solve problems. The author makes extensive use of the reduction approach to conditional distributions of independent random occupancy numbers, and provides excellent studies of occupancy and sequential occupancy distributions, convolutions of truncated discrete distributions, and compound and mixture distributions. Combinatorial Methods in Discrete Distributions begins with a brief presentation of set theory followed by basic counting principles. Fundamental principles of combinatorics, finite differences, and discrete probability are included to give readers the necessary foundation to the topics presented in the text. A thorough examination of the field is provided and features: Stirling numbers and generalized factorial coefficients Occupancy and sequential occupancy distributions n-fold convolutions of truncated distributions Compound and mixture distributions Thoroughly worked examples aid readers in understanding complex theory and discovering how theory can be applied to solve practical problems. An appendix with hints and answers to the exercises helps readers work through the more complex sections. Reference notes are provided at the end of each chapter, and an extensive bibliography offers readers a resource for additional information on specialized topics.
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population.
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this book an indispensable resource for researchers and practitioners in several scientific fields. Examples are drawn from different fields. An up-to-date reference appears at the end of the book. Chapter 1 introduces the basic concepts on random variables, and gives a simple method to find the mean deviation (MD) of discrete distributions. The Bernoulli and binomial distributions are discussed in detail in Chapter 2. A short chapter on discrete uniform distribution appears next. The next two chapters are on geometric and negative binomial distributions. Chapter 6 discusses the Poisson distribution in-depth, including applications in various fields. Chapter 7 is on hypergeometric distribution. As most textbooks in the market either do not discuss, or contain only brief description of the negative hypergeometric distribution, we have included an entire chapter on it. A short chapter on logarithmic series distribution follows it, in which a theorem to find the kth moment of logarithmic distribution using (k-1)th moment of zero-truncated geometric distribution is presented. The last chapter is on multinomial distribution and its applications. The primary users of this book are professionals and practitioners in various fields of engineering and the applied sciences. It will also be of use to graduate students in statistics, research scholars in science disciplines, and teachers of statistics, biostatistics, biotechnology, education, and psychology.