Discontinuous Control Systems

Discontinuous Control Systems

Author: Igor Boiko

Publisher: Springer Science & Business Media

Published: 2008-11-18

Total Pages: 217

ISBN-13: 0817647538

DOWNLOAD EBOOK

This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.


Discontinuous Systems

Discontinuous Systems

Author: Yury V. Orlov

Publisher: Springer Science & Business Media

Published: 2008-10-28

Total Pages: 333

ISBN-13: 1848009844

DOWNLOAD EBOOK

Discontinuous Systems develops nonsmooth stability analysis and discontinuous control synthesis based on novel modeling of discontinuous dynamic systems, operating under uncertain conditions. While being primarily a research monograph devoted to the theory of discontinuous dynamic systems, no background in discontinuous systems is required; such systems are introduced in the book at the appropriate conceptual level. Being developed for discontinuous systems, the theory is successfully applied to their subclasses – variable-structure and impulsive systems – as well as to finite- and infinite-dimensional systems such as distributed-parameter and time-delay systems. The presentation concentrates on algorithms rather than on technical implementation although theoretical results are illustrated by electromechanical applications. These specific applications complete the book and, together with the introductory theoretical constituents bring some elements of the tutorial to the text.


Differential Equations with Discontinuous Righthand Sides

Differential Equations with Discontinuous Righthand Sides

Author: A.F. Filippov

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 315

ISBN-13: 9401577935

DOWNLOAD EBOOK

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.


Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities

Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities

Author: Vladimir Andreevich I?A?kubovich

Publisher: World Scientific

Published: 2004

Total Pages: 351

ISBN-13: 9812387196

DOWNLOAD EBOOK

This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on solvability of matrix inequalities are presented and discussed in detail. It is shown how the tools developed can be applied to stability investigations of relay control systems, gyroscopic systems, mechanical systems with a Coulomb friction, nonlinear electrical circuits, cellular neural networks, phase-locked loops, and synchronous machines.


Discontinuous Automatic Control

Discontinuous Automatic Control

Author: Irmgard Flugge-Lotz

Publisher: Princeton University Press

Published: 2015-12-08

Total Pages: 177

ISBN-13: 1400877210

DOWNLOAD EBOOK

Discontinuously working elements (on-off controls) are widely used in automatic control systems. From an engineering point of view they are attractive because they are nearly always Simpler, more rugged, and cheaper to build than continuous controls. But prediction of their effects in the controlled system is sometimes so complicated that engineers have avoided discontinuous control where it would have been preferable to continuous control. Originally published in 1953. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Sliding Modes in Control and Optimization

Sliding Modes in Control and Optimization

Author: Vadim I. Utkin

Publisher: Springer Science & Business Media

Published: 2013-03-12

Total Pages: 300

ISBN-13: 3642843794

DOWNLOAD EBOOK

The book is devoted to systems with discontinuous control. The study of discontinuous dynamic systems is a multifacet problem which embraces mathematical, control theoretic and application aspects. Times and again, this problem has been approached by mathematicians, physicists and engineers, each profession treating it from its own positions. Interestingly, the results obtained by specialists in different disciplines have almost always had a significant effect upon the development of the control theory. It suffices to mention works on the theory of oscillations of discontinuous nonlinear systems, mathematical studies in ordinary differential equations with discontinuous righthand parts or variational problems in nonclassic statements. The unremitting interest to discontinuous control systems enhanced by their effective application to solution of problems most diverse in their physical nature and functional purpose is, in the author's opinion, a cogent argument in favour of the importance of this area of studies. It seems a useful effort to consider, from a control theoretic viewpoint, the mathematical and application aspects of the theory of discontinuous dynamic systems and determine their place within the scope of the present-day control theory. The first attempt was made by the author in 1975-1976 in his course on "The Theory of Discontinuous Dynamic Systems" and "The Theory of Variable Structure Systems" read to post-graduates at the University of Illinois, USA, and then presented in 1978-1979 at the seminars held in the Laboratory of Systems with Discontinous Control at the Institute of Control Sciences in Moscow.


Impulsive Control in Continuous and Discrete-Continuous Systems

Impulsive Control in Continuous and Discrete-Continuous Systems

Author: Boris M. Miller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 454

ISBN-13: 1461500958

DOWNLOAD EBOOK

Impulsive Control in Continuous and Discrete-Continuous Systems is an up-to-date introduction to the theory of impulsive control in nonlinear systems. This is a new branch of the Optimal Control Theory, which is tightly connected to the Theory of Hybrid Systems. The text introduces the reader to the interesting area of optimal control problems with discontinuous solutions, discussing the application of a new and effective method of discontinuous time-transformation. With a large number of examples, illustrations, and applied problems arising in the area of observation control, this book is excellent as a textbook or reference for a senior or graduate-level course on the subject, as well as a reference for researchers in related fields.


Advanced Control System Design

Advanced Control System Design

Author: Bernard Friedland

Publisher:

Published: 1996

Total Pages: 368

ISBN-13: 9780130140104

DOWNLOAD EBOOK

Stressing the importance of simulation and performance evaluation for effective design, this new text looks at the techniques engineers use to design control systems that work. It covers qualitative behavior and stability theory; graphical methods for nonlinear stability; saturating and discontinuous control; discrete-time systems; adaptive control; and more. For electrical engineers working in modern control system design.


Stability of Dynamical Systems

Stability of Dynamical Systems

Author:

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 516

ISBN-13: 0817644865

DOWNLOAD EBOOK

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.