Discontinuities in the Electromagnetic Field

Discontinuities in the Electromagnetic Field

Author: M. Mithat Idemen

Publisher: John Wiley & Sons

Published: 2011-10-18

Total Pages: 172

ISBN-13: 1118057910

DOWNLOAD EBOOK

A multifaceted approach to understanding, calculating, and managing electromagnetic discontinuities Presenting new, innovative approaches alongside basic results, this text helps readers better understand, calculate, and manage the discontinuities that occur within the electromagnetic field. Among the electromagnetic discontinuities explored in this volume are: Bounded jump discontinuities at the interfaces between two media or on the material sheets that model very thin layers Unbounded values at the edges of wedge-type structures Unbounded values at the tips of conical structures The text examines all the key issues related to the bodies that carry the interfaces, edges, or tips, whether these bodies are at rest or in motion with respect to an observer. In addition to its clear explanations, the text offers plenty of step-by-step examples to clarify complex theory and calculations. Moreover, readers are encouraged to fine-tune their skills and knowledge by solving the text's problem sets. Three fundamental, classical theories serve as the foundation for this text: distributions, confluence, and the special theory of relativity. The text sets forth the fundamentals of all three of these theories for readers who are not fully familiar with them. Moreover, the author demonstrates how to solve electromagnetic discontinuity problems by seamlessly combining all three theories into a single approach. With this text as their guide, readers can apply a unique philosophy and approach to the investigation and development of structures that have the potential to enhance the capabilities of electronics, antennas, microwaves, acoustics, medicine, and many more application areas.


Principles of Optics

Principles of Optics

Author: Max Born

Publisher: CUP Archive

Published: 2000-02-28

Total Pages: 996

ISBN-13: 9780521784498

DOWNLOAD EBOOK

Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.


Propagation of First-order Electromagnetic Discontinuities in an Isotropic Medium

Propagation of First-order Electromagnetic Discontinuities in an Isotropic Medium

Author: R. Venkataraman

Publisher:

Published: 1970

Total Pages: 31

ISBN-13:

DOWNLOAD EBOOK

The propagation of a first-order electromagnetic discontinuity is discussed. Expressions are obtained for the possible velocities of propagation as functions of the field strengths ahead of the surface of discontinuity. Expressions are also obtained for the growth in the magnitude of the discontinuity as the wave progresses. (Author).


Electromagnetic Nondestructive Evaluation (VII)

Electromagnetic Nondestructive Evaluation (VII)

Author: Gerd Dobmann

Publisher: IOS Press

Published: 2006

Total Pages: 348

ISBN-13: 9781586035945

DOWNLOAD EBOOK

The aim of this selection of papers is to bring together researchers working very deep in the basics of electromagnetic NDT on one hand and industrialist discussing their practical problems on the other hand. The papers cover topics as; Microwave applications and Material Characterization; General Eddy Current Inspection Tasks; Novel Techniques and Sensors; Magnetic Flux leakage Inspection; Steam Generator Eddy Current Inspection Tasks; and Material Characterization. Especially Novel Techniques and Sensors and Material Characterization are discussed on multiple papers. This publication gives a good overview of the many scientific problems in this area, but also explains the actual challenges for the scientific-technical community, like problems with in-line inspection of pipelines or the enhancing of the inspection performance in steam generator tubes inspection in the nuclear field. The material is important for scientists and engineers working in the field of electromagnetic non-destructive testing, in defect detection and sizing, as well as in material characterization.


Electromagnetic Phenomena in Matter

Electromagnetic Phenomena in Matter

Author: Igor N. Toptygin

Publisher: John Wiley & Sons

Published: 2015-02-09

Total Pages: 720

ISBN-13: 3527413162

DOWNLOAD EBOOK

Modern electrodynamics in different media is a wide branch of electrodynamics which combines the exact theory of electromagnetic fields in the presence of electric charges and currents with statistical description of these fields in gases, plasmas, liquids and solids; dielectrics, conductors and superconductors. It is widely used in physics and in other natural sciences (such as astrophysics and geophysics, biophysics, ecology and evolution of terrestrial climate), and in various technological applications (radio electronics, technology of artificial materials, laser-based technological processes, propagation of bunches of charges particles, linear and nonlinear electromagnetic waves, etc.). Electrodynamics of matter is based on the exact fundamental (microscopic) electrodynamics but is supplemented with specific descriptions of electromagnetic fields in various media using the methods of statistical physics, quantum mechanics, physics of condensed matter (including theory of superconductivity), physical kinetics and plasma physics. This book presents in one unique volume a systematic description of the main electrodynamic phenomena in matter: - A large variety of theoretical approaches used in describing various media - Numerous important manifestations of electrodynamics in matter (magnetic materials, superconductivity, magnetic hydrodynamics, holography, radiation in crystals, solitons, etc.) - A description of the applications used in different branches of physics and many other fields of natural sciences - Describes the whole complexity of electrodynamics in matter including material at different levels. - Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lectures, and engineers and scientists working in the field. - The reader will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic (fundamental) electrodynamics at the standard university level - All examples and problems are described in detail in the text to help the reader learn how to solve problems - Advanced problems are marked with one asterisk, and the most advanced ones with two asterisks. Some problems are recommended to be solved first, and are are marked by filled dots; they are more general and important or contain results used in other problems.