Second Order Partial Differential Equations in Hilbert Spaces

Second Order Partial Differential Equations in Hilbert Spaces

Author: Giuseppe Da Prato

Publisher: Cambridge University Press

Published: 2002-07-25

Total Pages: 397

ISBN-13: 1139433431

DOWNLOAD EBOOK

State of the art treatment of a subject which has applications in mathematical physics, biology and finance. Includes discussion of applications to control theory. There are numerous notes and references that point to further reading. Coverage of some essential background material helps to make the book self contained.


Second Order PDE's in Finite and Infinite Dimension

Second Order PDE's in Finite and Infinite Dimension

Author: Sandra Cerrai

Publisher: Springer

Published: 2003-07-01

Total Pages: 330

ISBN-13: 3540451471

DOWNLOAD EBOOK

The main objective of this monograph is the study of a class of stochastic differential systems having unbounded coefficients, both in finite and in infinite dimension. We focus our attention on the regularity properties of the solutions and hence on the smoothing effect of the corresponding transition semigroups in the space of bounded and uniformly continuous functions. As an application of these results, we study the associated Kolmogorov equations, the large-time behaviour of the solutions and some stochastic optimal control problems together with the corresponding Hamilton- Jacobi-Bellman equations. In the literature there exists a large number of works (mostly in finite dimen sion) dealing with these arguments in the case of bounded Lipschitz-continuous coefficients and some of them concern the case of coefficients having linear growth. Few papers concern the case of non-Lipschitz coefficients, but they are mainly re lated to the study of the existence and the uniqueness of solutions for the stochastic system. Actually, the study of any further properties of those systems, such as their regularizing properties or their ergodicity, seems not to be developed widely enough. With these notes we try to cover this gap.


Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Author: Martino Bardi

Publisher: Springer Science & Business Media

Published: 2009-05-21

Total Pages: 588

ISBN-13: 0817647554

DOWNLOAD EBOOK

This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.


Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Author: Yves Achdou

Publisher: Springer

Published: 2013-05-24

Total Pages: 316

ISBN-13: 3642364330

DOWNLOAD EBOOK

These Lecture Notes contain the material relative to the courses given at the CIME summer school held in Cetraro, Italy from August 29 to September 3, 2011. The topic was "Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications". The courses dealt mostly with the following subjects: first order and second order Hamilton-Jacobi-Bellman equations, properties of viscosity solutions, asymptotic behaviors, mean field games, approximation and numerical methods, idempotent analysis. The content of the courses ranged from an introduction to viscosity solutions to quite advanced topics, at the cutting edge of research in the field. We believe that they opened perspectives on new and delicate issues. These lecture notes contain four contributions by Yves Achdou (Finite Difference Methods for Mean Field Games), Guy Barles (An Introduction to the Theory of Viscosity Solutions for First-order Hamilton-Jacobi Equations and Applications), Hitoshi Ishii (A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations) and Grigory Litvinov (Idempotent/Tropical Analysis, the Hamilton-Jacobi and Bellman Equations).


Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension

Author: Giorgio Fabbri

Publisher: Springer

Published: 2017-06-22

Total Pages: 928

ISBN-13: 3319530674

DOWNLOAD EBOOK

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.


Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions

Author: Wendell H. Fleming

Publisher: Springer Science & Business Media

Published: 2006-02-04

Total Pages: 436

ISBN-13: 0387310711

DOWNLOAD EBOOK

This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.


Hamilton-Jacobi Equations in Hilbert Spaces

Hamilton-Jacobi Equations in Hilbert Spaces

Author: Viorel Barbu

Publisher: Pitman Advanced Publishing Program

Published: 1983

Total Pages: 188

ISBN-13:

DOWNLOAD EBOOK

This presents a self-contained treatment of Hamilton-Jacobi equations in Hilbert spaces. Most of the results presented have been obtained by the authors. The treatment is novel in that it is concerned with infinite dimensional Hamilton-Jacobi equations; it therefore does not overlap with Research Note #69. Indeed, these books are in a sense complementary.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.