Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Author: Grétar Tryggvason

Publisher: Cambridge University Press

Published: 2011-03-10

Total Pages: 337

ISBN-13: 1139496700

DOWNLOAD EBOOK

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.


Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Author: Heinz Pitsch

Publisher: Springer Nature

Published: 2020-05-28

Total Pages: 294

ISBN-13: 3030447189

DOWNLOAD EBOOK

This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.


Theories of Turbulence

Theories of Turbulence

Author: Martin Oberlack

Publisher: Springer

Published: 2014-05-04

Total Pages: 377

ISBN-13: 3709125642

DOWNLOAD EBOOK

The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.


Numerical Techniques for Direct and Large-Eddy Simulations

Numerical Techniques for Direct and Large-Eddy Simulations

Author: Xi Jiang

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 284

ISBN-13: 1420075799

DOWNLOAD EBOOK

Compared to the traditional modeling of computational fluid dynamics, direct numerical simulation (DNS) and large-eddy simulation (LES) provide a very detailed solution of the flow field by offering enhanced capability in predicting the unsteady features of the flow field. In many cases, DNS can obtain results that are impossible using any other me


Numerical Simulations

Numerical Simulations

Author: Lutz Angermann

Publisher: BoD – Books on Demand

Published: 2010-12-30

Total Pages: 454

ISBN-13: 9533071532

DOWNLOAD EBOOK

This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.


Direct and Large Eddy Simulation XII

Direct and Large Eddy Simulation XII

Author: Manuel García-Villalba

Publisher: Springer Nature

Published: 2020-05-09

Total Pages: 478

ISBN-13: 3030428222

DOWNLOAD EBOOK

This book gathers the proceedings of the 12th instalment in the bi-annual Workshop series on Direct and Large Eddy Simulation (DLES), which began in 1994 and focuses on modern techniques used to simulate turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structure. With the rapidly expanding capacities of modern computers, this approach has attracted more and more interest over the years and will undoubtedly be further enhanced and applied in the future. Hybrid modelling techniques based on a combination of LES and RANS approaches also fall into this category and are covered as well. The goal of the Workshop was to share the state of the art in DNS, LES and related techniques for the computation and modelling of turbulent and transitional flows. The respective papers highlight the latest advances in the prediction, understanding and control of turbulent flows in academic and industrial applications.


Bubbly Flows

Bubbly Flows

Author: Martin Sommerfeld

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 3642185401

DOWNLOAD EBOOK

The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.


Numerical Simulations of Incompressible Flows

Numerical Simulations of Incompressible Flows

Author: M. M. Hafez

Publisher: World Scientific

Published: 2003

Total Pages: 708

ISBN-13: 9812383174

DOWNLOAD EBOOK

"Consists mainly of papers presented at a workshop ... held in Half Moon Bay, California, June 19-21, 2001 ... to honor Dr. Dochan Kwak on the occasion of his 60th birthday ... organized by M. Hafez of University of California Davis and Dong Ho Lee of Seoul National University"--Dedication, p. ix.