Direct Modeling For Computational Fluid Dynamics: Construction And Application Of Unified Gas-kinetic Schemes

Direct Modeling For Computational Fluid Dynamics: Construction And Application Of Unified Gas-kinetic Schemes

Author: Kun Xu

Publisher: World Scientific

Published: 2014-12-23

Total Pages: 335

ISBN-13: 9814623733

DOWNLOAD EBOOK

Computational fluid dynamics (CFD) studies the flow motion in a discretized space. Its basic scale resolved is the mesh size and time step. The CFD algorithm can be constructed through a direct modeling of flow motion in such a space. This book presents the principle of direct modeling for the CFD algorithm development, and the construction unified gas-kinetic scheme (UGKS). The UGKS accurately captures the gas evolution from rarefied to continuum flows. Numerically it provides a continuous spectrum of governing equation in the whole flow regimes.


A Unified Computational Fluid Dynamics Framework from Rarefied to Continuum Regimes

A Unified Computational Fluid Dynamics Framework from Rarefied to Continuum Regimes

Author: Kun Xu

Publisher: Cambridge University Press

Published: 2021-06-10

Total Pages: 106

ISBN-13: 1108890512

DOWNLOAD EBOOK

This Element presents a unified computational fluid dynamics framework from rarefied to continuum regimes. The framework is based on the direct modelling of flow physics in a discretized space. The mesh size and time step are used as modelling scales in the construction of discretized governing equations. With the variation-of-cell Knudsen number, continuous modelling equations in different regimes have been obtained, and the Boltzmann and Navier-Stokes equations become two limiting equations in the kinetic and hydrodynamic scales. The unified algorithms include the discrete velocity method (DVM)–based unified gas-kinetic scheme (UGKS), the particlebased unified gas-kinetic particle method (UGKP), and the wave and particle–based unified gas-kinetic wave-particle method (UGKWP). The UGKWP is a multi-scale method with the particle for non-equilibrium transport and wave for equilibrium evolution. The particle dynamics in the rarefied regime and the hydrodynamic flow solver in the continuum regime have been unified according to the cell's Knudsen number.


Lattice Boltzmann And Gas Kinetic Flux Solvers: Theory And Applications

Lattice Boltzmann And Gas Kinetic Flux Solvers: Theory And Applications

Author: Liming Yang

Publisher: World Scientific

Published: 2020-07-13

Total Pages: 379

ISBN-13: 9811224706

DOWNLOAD EBOOK

Computational fluid dynamics (CFD) has been widely applied in a wide variety of industrial applications, including aeronautics, astronautics, energy, chemical, pharmaceuticals, power and petroleum.This unique compendium documents the recent developments in CFD based on kinetic theories, introducing flux reconstruction strategies of kinetic methods for the simulation of complex incompressible and compressible flows, namely the lattice Boltzmann and the gas kinetic flux solvers (LBFS or GKFS). LBFS and GKFS combine advantages of both Navier-Stokes (N-S) solvers and kinetic solvers.Detailed derivations, evaluations and applications of LBFS and GKFS, and their advantages over conventional flux reconstruction strategies are analyzed and discussed in the volume.The must-have reference text is useful for scholars, researchers, professionals and students who are keen in CFD methods and numerical simulations.


Simplified And Highly Stable Lattice Boltzmann Method: Theory And Applications

Simplified And Highly Stable Lattice Boltzmann Method: Theory And Applications

Author: Zhen Chen

Publisher: World Scientific

Published: 2020-09-15

Total Pages: 275

ISBN-13: 9811228515

DOWNLOAD EBOOK

This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability.This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiri Blazek

Publisher: Elsevier

Published: 2005-12-20

Total Pages: 491

ISBN-13: 0080529674

DOWNLOAD EBOOK

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.


Computational Fluid Dynamics in Fire Engineering

Computational Fluid Dynamics in Fire Engineering

Author: Guan Heng Yeoh

Publisher: Butterworth-Heinemann

Published: 2009-04-20

Total Pages: 545

ISBN-13: 0080570038

DOWNLOAD EBOOK

Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures.No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems. - Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering - Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators - Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software


Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics

Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics

Author: Titus Petrila

Publisher: Springer Science & Business Media

Published: 2006-06-14

Total Pages: 513

ISBN-13: 0387238387

DOWNLOAD EBOOK

The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.


Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics

Author: Anil W. Date

Publisher: Cambridge University Press

Published: 2005-08-08

Total Pages: 408

ISBN-13: 9781139446839

DOWNLOAD EBOOK

Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.


Computational Fluid Dynamics with Moving Boundaries

Computational Fluid Dynamics with Moving Boundaries

Author: Wei Shyy

Publisher: Courier Corporation

Published: 2012-08-21

Total Pages: 306

ISBN-13: 0486135551

DOWNLOAD EBOOK

This text describes several computational techniques that can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics involving moving flow boundaries. Step-by-step discussions of numerical procedures include multiple examples that employ algorithms in problem-solving. In addition to its survey of contemporary numerical techniques, this volume discusses formulation and computation strategies as well as applications in many fields. Researchers and professionals in aerospace, chemical, mechanical, and materials engineering will find it a valuable resource. It is also an appropriate textbook for advanced courses in fluid dynamics, computation fluid dynamics, heat transfer, and numerical methods.


Computational Aerodynamic Modeling of Aerospace Vehicles

Computational Aerodynamic Modeling of Aerospace Vehicles

Author: Mehdi Ghoreyshi

Publisher: MDPI

Published: 2019-03-08

Total Pages: 294

ISBN-13: 3038976105

DOWNLOAD EBOOK

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.