Dirac Operators in Representation Theory

Dirac Operators in Representation Theory

Author: Jing-Song Huang

Publisher: Springer Science & Business Media

Published: 2007-05-27

Total Pages: 205

ISBN-13: 0817644938

DOWNLOAD EBOOK

This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.


Clifford Algebras and Dirac Operators in Harmonic Analysis

Clifford Algebras and Dirac Operators in Harmonic Analysis

Author: John E. Gilbert

Publisher: Cambridge University Press

Published: 1991-07-26

Total Pages: 346

ISBN-13: 9780521346542

DOWNLOAD EBOOK

The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.


Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory

Author: Victor G. Kac

Publisher: Springer

Published: 2018-12-12

Total Pages: 545

ISBN-13: 3030021912

DOWNLOAD EBOOK

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)


Dirac Operators in Riemannian Geometry

Dirac Operators in Riemannian Geometry

Author: Thomas Friedrich

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 213

ISBN-13: 0821820559

DOWNLOAD EBOOK

For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.


Handbook of Relativistic Quantum Chemistry

Handbook of Relativistic Quantum Chemistry

Author: Wenjian Liu

Publisher: Springer

Published: 2016-06-15

Total Pages: 0

ISBN-13: 9783642407659

DOWNLOAD EBOOK

This handbook covers new methodological developments and applications of relativistic quantum chemistry. It also pays attention to the foundation of relativistic quantum mechanics and addresses a number of fundamental issues that have not been covered by any book. For instance, what is the appropriate relativistic many-electron Hamiltonian? How to do relativistic explicit/local correlation? How to formulate relativistic properties? How to combine double-group and time-reversal symmetries? How to do QED calculations for molecules? Just to name a few. This book aims to establish the big picture of relativistic molecular quantum mechanics, ranging from pedagogic introduction for uninitiated readers, advanced methodologies and efficient algorithms for experts, to possible future perspectives, such that the reader knows when/how to apply/develop the methodologies. This self-contained two-volume book can be regarded as a supplement to the three-volume "Handbook of Computational Chemistry", which contains no relativity at all. It is to be composed of 6 sections with different chapters (will be further expanded), each of which is to be written by the most active experts, who will be invited upon approval of this proposal.


Heat Kernels and Dirac Operators

Heat Kernels and Dirac Operators

Author: Nicole Berline

Publisher: Springer Science & Business Media

Published: 2003-12-08

Total Pages: 384

ISBN-13: 9783540200628

DOWNLOAD EBOOK

In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.


Elliptic Boundary Problems for Dirac Operators

Elliptic Boundary Problems for Dirac Operators

Author: Bernhelm Booß-Bavnbek

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 322

ISBN-13: 1461203376

DOWNLOAD EBOOK

Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.


Representations of Groups

Representations of Groups

Author: Klaus Lux

Publisher: Cambridge University Press

Published: 2010-07-01

Total Pages: 471

ISBN-13: 1139489186

DOWNLOAD EBOOK

The representation theory of finite groups has seen rapid growth in recent years with the development of efficient algorithms and computer algebra systems. This is the first book to provide an introduction to the ordinary and modular representation theory of finite groups with special emphasis on the computational aspects of the subject. Evolving from courses taught at Aachen University, this well-paced text is ideal for graduate-level study. The authors provide over 200 exercises, both theoretical and computational, and include worked examples using the computer algebra system GAP. These make the abstract theory tangible and engage students in real hands-on work. GAP is freely available from www.gap-system.org and readers can download source code and solutions to selected exercises from the book's web page.


Group Representation Theory For Physicists (2nd Edition)

Group Representation Theory For Physicists (2nd Edition)

Author: Jialun Ping

Publisher: World Scientific Publishing Company

Published: 2002-08-15

Total Pages: 602

ISBN-13: 981310600X

DOWNLOAD EBOOK

This book introduces systematically the eigenfunction method, a new approach to the group representation theory which was developed by the authors in the 1970's and 1980's in accordance with the concept and method used in quantum mechanics. It covers the applications of the group theory in various branches of physics and quantum chemistry, especially nuclear and molecular physics. Extensive tables and computational methods are presented.Group Representation Theory for Physicists may serve as a handbook for researchers doing group theory calculations. It is also a good reference book and textbook for undergraduate and graduate students who intend to use group theory in their future research careers.