Provides a comprehensive overview of the development of procedures for in vivo dosimetry in radiotherapy. It elaborates on the technology behind in vivo dosimetry and describes an initial set of measurements.
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
This publication provides guidance for designing and implementing radiotherapy programmes, taking into account clinical, medical physics, radiation protection and safety aspects. It reflects current requirements for radiotherapy infrastructure in settings with limited resources. It will be of use to professionals involved in the development, implementation and management of radiotherapy programmes
Accuracy requirements in radiation oncology have been defined in multiple publications; however, these have been based on differing radiation technologies. In the meantime, the uncertainties in radiation dosimetry reference standards have been reduced and more detailed patient outcome data are available. No comprehensive literature on accuracy and uncertainties in radiotherapy has been published so far. The IAEA has therefore developed a new international consensus document on accuracy requirements and uncertainties in radiation therapy, to promote safer and more effective patient treatments. This publication addresses accuracy and uncertainty issues related to the vast majority of radiotherapy departments including both external beam radiotherapy and brachytherapy. It covers clinical, radiobiological, dosimetric, technical and physical aspects.
This guide & companion to the Radiation Oncology Self-Assessment Guide is a comprehensive physics review for anyone in the field of radiation oncology looking to enhance their knowledge of medical physics. It covers in depth the principles of radiation physics as applied to radiation therapy along with their technical and clinical applications. To foster retention of key concepts and data, the resource utilizes a user-friendly ìflash cardî question and answer format with over 800 questions. The questions are supported by detailed answers and rationales along with reference citations for source information. The Guide is comprised of 14 chapters that lead the reader through the radiation oncology physics field, from basic physics to current practice and latest innovations. Aspects of basic physics covered include fundamentals, photon and particle interactions, and dose measurement. A section on current practice covers treatment planning, safety, regulations, quality assurance, and SBRT, SRS, TBI, IMRT, and IGRT techniques. A chapter unique to this volume is dedicated to those topics in diagnostic imaging most relevant to radiology, including MRI, ultrasound, fluoroscopy, mammography, PET, SPECT, and CT. New technologies such as VMAT, novel IGRT devices, proton therapy, and MRI-guided therapy are also incorporated. Focused and authoritative, this must-have review combines the expertise of clinical radiation oncology and radiation physics faculty from the Cleveland Clinic Taussig Cancer Institute. Key Features: Includes more than 800 questions with detailed answers and rationales A one-stop guide for those studying the physics of radiation oncology including those wishing to reinforce their current knowledge of medical physics Delivered in a ìflash cardî format to facilitate recall of key concepts and data Presents a unique chapter on diagnostic imaging topics most relevant to radiation oncology Content provided by a vast array of contributors, including physicists, radiation oncology residents, dosimetrists, and physicians About the Editors: Andrew Godley, PhD, is Staff Physicist, Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH Ping Xia, PhD, is Head of Medical Physics and Professor of Molecular Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR
Scintillation Dosimetry delivers a comprehensive introduction to plastic scintillation dosimetry, covering everything from basic radiation dosimetry concepts to plastic scintillating fiber optics. Comprised of chapters authored by leading experts in the medical physics community, the book: Discusses a broad range of technical implementations, from point source dosimetry scaling to 3D-volumetric and 4D-scintillation dosimetry Addresses a wide scope of clinical applications, from machine quality assurance to small-field and in vivo dosimetry Examines related optical techniques, such as optically stimulated luminescence (OSL) or Čerenkov luminescence Thus, Scintillation Dosimetry provides an authoritative reference for detailed, state-of-the-art information on plastic scintillation dosimetry and its use in the field of radiation dosimetry.
Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank.