Digital Spectral Analysis

Digital Spectral Analysis

Author: S. Lawrence Marple, Jr.

Publisher: Courier Dover Publications

Published: 2019-03-20

Total Pages: 435

ISBN-13: 048678052X

DOWNLOAD EBOOK

Digital Spectral Analysis offers a broad perspective of spectral estimation techniques and their implementation. Coverage includes spectral estimation of discrete-time or discrete-space sequences derived by sampling continuous-time or continuous-space signals. The treatment emphasizes the behavior of each spectral estimator for short data records and provides over 40 techniques described and available as implemented MATLAB functions. In addition to summarizing classical spectral estimation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. Topics include Prony's method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods. Suitable for advanced undergraduates and graduate students of electrical engineering — and for scientific use in the signal processing application community outside of universities — the treatment's prerequisites include some knowledge of discrete-time linear system and transform theory, introductory probability and statistics, and linear algebra. 1987 edition.


Digital Signal Processing and Spectral Analysis for Scientists

Digital Signal Processing and Spectral Analysis for Scientists

Author: Silvia Maria Alessio

Publisher: Springer

Published: 2015-12-09

Total Pages: 909

ISBN-13: 3319254685

DOWNLOAD EBOOK

This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.


The Spectral Analysis of Time Series

The Spectral Analysis of Time Series

Author: L. H. Koopmans

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 383

ISBN-13: 1483218546

DOWNLOAD EBOOK

The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.


Spectral Analysis for Physical Applications

Spectral Analysis for Physical Applications

Author: Donald B. Percival

Publisher: Cambridge University Press

Published: 1993-06-03

Total Pages: 616

ISBN-13: 9780521435413

DOWNLOAD EBOOK

This book is an up-to-date introduction to univariate spectral analysis at the graduate level, which reflects a new scientific awareness of spectral complexity, as well as the widespread use of spectral analysis on digital computers with considerable computational power. The text provides theoretical and computational guidance on the available techniques, emphasizing those that work in practice. Spectral analysis finds extensive application in the analysis of data arising in many of the physical sciences, ranging from electrical engineering and physics to geophysics and oceanography. A valuable feature of the text is that many examples are given showing the application of spectral analysis to real data sets. Special emphasis is placed on the multitaper technique, because of its practical success in handling spectra with intricate structure, and its power to handle data with or without spectral lines. The text contains a large number of exercises, together with an extensive bibliography.


Digital Spectral Analysis MATLAB® Software User Guide

Digital Spectral Analysis MATLAB® Software User Guide

Author: S. Lawrence Marple, Jr.

Publisher: Courier Dover Publications

Published: 2019-05-15

Total Pages: 130

ISBN-13: 0486837386

DOWNLOAD EBOOK

This user guide serves as a companion to Digital Spectral Analysis, Second Edition (Dover Publications, 2019), illustrating all the text's techniques and algorithms, plus time versus frequency analysis. The spectral demonstrations use MATLAB software that encompasses the full experience from inputting signal sources, interactively setting technique parameters and processing with those parameters, and choosing from a variety of plotting techniques to display the results. The processing functions and scripts have been coded to automatically handle sample data that is either real-valued or complex-valued, permitting the user to simply modify the demonstration scripts to input their own data for analysis. Four integrated software categories support the demonstrations. These are the main MATLAB spectral demonstration scripts, supporting MATLAB plotting scripts, MATLAB processing functions listed in this guide, and signal sample data sources. Scripts and demonstration data files can be found on the Dover website for free downloading; see the Introduction for details.


Digital Spectral Analysis

Digital Spectral Analysis

Author: Francis Castanié

Publisher: John Wiley & Sons

Published: 2013-02-04

Total Pages: 297

ISBN-13: 1118601831

DOWNLOAD EBOOK

Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature. The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models. An entire chapter is devoted to the non-parametric methods most widely used in industry. High resolution methods are detailed in a further four chapters: spectral analysis by stationary time series modeling, minimum variance, and subspace-based estimators. Finally, advanced concepts are the core of the last four chapters: spectral analysis of non-stationary random signals, space time adaptive processing: irregularly sampled data processing, particle filtering and tracking of varying sinusoids. Suitable for students, engineers working in industry, and academics at any level, this book provides a rare complete overview of the spectral analysis domain.


Spectral Analysis and Filter Theory in Applied Geophysics

Spectral Analysis and Filter Theory in Applied Geophysics

Author: Burkhard Buttkus

Publisher: Springer Science & Business Media

Published: 2000-03-27

Total Pages: 698

ISBN-13: 9783540626749

DOWNLOAD EBOOK

This state-of-the-art survey serves as a complete overview of the subject. Besides the principles and theoretical foundations, emphasis is laid on practical applicability -- describing not only classical methods, but also modern developments and their applications. Students, researchers and practitioners, especially in the fields of data registration, treatment and evaluation, will find this a wealth of information.


Signal Analysis

Signal Analysis

Author: Ronald L. Allen

Publisher: John Wiley & Sons

Published: 2004-06-07

Total Pages: 961

ISBN-13: 0471660361

DOWNLOAD EBOOK

Offers a well-rounded, mathematical approach to problems in signal interpretation using the latest time, frequency, and mixed-domain methods Equally useful as a reference, an up-to-date review, a learning tool, and a resource for signal analysis techniques Provides a gradual introduction to the mathematics so that the less mathematically adept reader will not be overwhelmed with instant hard analysis Covers Hilbert spaces, complex analysis, distributions, random signals, analog Fourier transforms, and more


Automatic Autocorrelation and Spectral Analysis

Automatic Autocorrelation and Spectral Analysis

Author: Piet M. T. Broersen

Publisher: Springer Science & Business Media

Published: 2006-04-20

Total Pages: 301

ISBN-13: 1846283280

DOWNLOAD EBOOK

Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.