New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules
Appropriate for a first or second course in digital logic design. This newly revised book blends academic precision and practical experience in an authoritative introduction to basic principles of digital design and practical requirements in both board-level and VLSI systems. With over twenty years of experience in both industrial and university settings, the author covers the most widespread logic design practices while building a solid foundation of theoretical and engineering principles for students to use as they go forward in this fast moving field.
This textbook, based on the authors' fifteen years of teaching, is a complete teaching tool for turning students into logic designers in one semester. Each chapter describes new concepts, giving extensive applications and examples. Assuming no prior knowledge of discrete mathematics, the authors introduce all background in propositional logic, asymptotics, graphs, hardware and electronics. Important features of the presentation are: • All material is presented in full detail. Every designed circuit is formally specified and implemented, the correctness of the implementation is proved, and the cost and delay are analyzed • Algorithmic solutions are offered for logical simulation, computation of propagation delay and minimum clock period • Connections are drawn from the physical analog world to the digital abstraction • The language of graphs is used to describe formulas and circuits • Hundreds of figures, examples and exercises enhance understanding. The extensive website (http://www.eng.tau.ac.il/~guy/Even-Medina/) includes teaching slides, links to Logisim and a DLX assembly simulator.
Description:The book is an attempt to make Digital Logic Design easy and simple to understand. The book covers various features of Logic Design using lots of examples and relevant diagrams. The complete text is reviewed for its correctness. This book is an outcome of sincere effort and hard work to bring concepts of Digital Logic Design close to the audience of this book.The salient features of the book:--Easy explanation of Digital System and Binary Numbers with lots of solved examples-Detailed covering of Boolean Algebra and Gate-Level Minimization with proper examples and diagrammatic -representation.-Detailed analysis of different Combinational Logic Circuits-Complete Synchronous sequential Logic understanding-Deep understanding of Memory and Programmable Logic-Detailed analysis of different Asynchronous Sequential LogicTable Of Contents:Unit 1 : Digital System and Binary Numbers;Part 1: Digital System and Binary NumbersPart 2 : Boolean Algebra and Gate Level MinimizationUnit 2 : Combinational LogicUnit 3: Sequential CircuitsUnit 4 : Memory, Programmable Logic and DesignUnit 5 : Asynchronous Sequential Logic
Market_Desc: · Electrical engineers· Logic Designers in Computer Industry Special Features: · Provides extensive exercises for readers to work out while studying a topic· Presents up-to-date approaches in logic design in later chapters· Discusses the relationship between digital system design and computer architecture About The Book: This is an introductory-level book on the principles of digital logic design. While providing coverage to the usual topics in combinational and sequential circuit principles, it also includes a chapter on the use of the hardware description language ABEL in the design of circuits using PLDs and a chapter on computer organization.
This practical introduction explains exactly how digital circuits are designed, from the basic circuit to the advanced system. It covers combinational logic circuits, which collect logic signals, to sequential logic circuits, which embody time and memory to progress through sequences of states. The primer also highlights digital arithmetic and the integrated circuits that implement the logic functions.Based on the author's extensive experience in teaching digital electronics to undergraduates, the book translates theory directly into practice and presents the essential information in a compact, digestible style. Worked problems and examples are accompanied by abbreviated solutions, with demonstrations to ensure that the design material and the circuits' operation are fully understood.This is essential reading for any electronic or electrical engineering student new to digital electronics and requiring a succinct yet comprehensive introduction.
A COMPREHENSIVE GUIDE TO THE DESIGN & ORGANIZATION OF MODERN COMPUTING SYSTEMS Digital Logic Design and Computer Organization with Computer Architecture for Security provides practicing engineers and students with a clear understanding of computer hardware technologies. The fundamentals of digital logic design as well as the use of the Verilog hardware description language are discussed. The book covers computer organization and architecture, modern design concepts, and computer security through hardware. Techniques for designing both small and large combinational and sequential circuits are thoroughly explained. This detailed reference addresses memory technologies, CPU design and techniques to increase performance, microcomputer architecture, including "plug and play" device interface, and memory hierarchy. A chapter on security engineering methodology as it applies to computer architecture concludes the book. Sample problems, design examples, and detailed diagrams are provided throughout this practical resource. COVERAGE INCLUDES: Combinational circuits: small designs Combinational circuits: large designs Sequential circuits: core modules Sequential circuits: small designs Sequential circuits: large designs Memory Instruction set architecture Computer architecture: interconnection Memory system Computer architecture: security
This book focuses on the basic principles of digital electronics and logic design. It is designed as a textbook for undergraduate students of electronics, electrical engineering, computer science, physics, and information technology. The text covers the syllabi of several Indian and foreign universities. It depicts the comprehensive resources
"Digital Design provides a modern approach to learning the increasingly important topic of digital systems design. The text's focus on register-transfer-level design and present-day applications not only leads to a better appreciation of computers and of today's ubiquitous digital devices, but also provides for a better understanding of careers involving digital design and embedded system design. The book's key features include: An emphasis on register-transfer-level (RTL) design, the level at which most digital design is practiced today, giving readers a modern perspective of the field's applicability. Yet, coverage stays bottom-up and concrete, starting from basic transistors and gates, and moving step-by-step up to more complex components. Extensive use of basic examples to teach and illustrate new concepts, and of application examples, such as pacemakers, ultrasound machines, automobiles, and cell phones, to demonstrate the immediate relevance of the concepts. Separation of basic design from optimization, allowing development of a solid understanding of basic design, before considering the more advanced topic of optimization. Flexible organization, enabling early or late coverage of optimization methods or of HDLs, and enabling choice of VHDL, Verilog, or SystemC HDLs. Career insights and advice from designers with varying levels of experience. A clear bottom-up description of field-programmable gate arrays (FPGAs). About the Author: Frank Vahid is a Professor of Computer Science & Engineering at the University of California, Riverside. He holds Electrical Engineering and Computer Science degrees; has worked/consulted for Hewlett Packard, AMCC, NEC, Motorola, and medical equipment makers; holds 3 U.S. patents; has received several teaching awards; helped setup UCR's Computer Engineering program; has authored two previous textbooks; and has published over 120 papers on digital design topics (automation, architecture, and low-power).
This text and reference provides students and practicing engineers with an introduction to the classical methods of designing electrical circuits, but incorporates modern logic design techniques used in the latest microprocessors, microcontrollers, microcomputers, and various LSI components. The book provides a review of the classical methods e.g., the basic concepts of Boolean algebra, combinational logic and sequential logic procedures, before engaging in the practical design approach and the use of computer-aided tools. The book is enriched with numerous examples (and their solutions), over 500 illustrations, and includes a CD-ROM with simulations, additional figures, and third party software to illustrate the concepts discussed in the book.