Discrete Wavelet Transforms

Discrete Wavelet Transforms

Author: Hannu Olkkonen

Publisher: BoD – Books on Demand

Published: 2011-08-29

Total Pages: 312

ISBN-13: 9533074825

DOWNLOAD EBOOK

The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications.


Efficient Algorithms for Discrete Wavelet Transform

Efficient Algorithms for Discrete Wavelet Transform

Author: K K Shukla

Publisher: Springer Science & Business Media

Published: 2013-01-26

Total Pages: 97

ISBN-13: 1447149416

DOWNLOAD EBOOK

Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in signal/image processing. Wavelet transforms have excellent energy compaction characteristics and can provide perfect reconstruction. The shifting (translation) and scaling (dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients. This work presents new implementation techniques of DWT, that are efficient in terms of computation, storage, and with better signal-to-noise ratio in the reconstructed signal.


Vlsi Design Of Wavelet Transform: Analysis, Architecture, And Design Examples

Vlsi Design Of Wavelet Transform: Analysis, Architecture, And Design Examples

Author: Liang-gee Chen

Publisher: World Scientific

Published: 2006-12-09

Total Pages: 301

ISBN-13: 1911299263

DOWNLOAD EBOOK

Discrete wavelet transforms (DWTs) have led the revolutions in image and video coding systems over the past decade. In this book, the DWT is presented from the VLSI design perspective, and the related theories, algorithms, and architectures are discussed for 1D, 2D, and 3D DWT.The book provides a comprehensive analysis and discussion of DWTs and their applications including important materials and the newest developments in wavelet processing. For example, the architecture designs of 2D DWT in JPEG 2000 and the development of motion-compensated temporal filtering (MCTF) are explored./a


Computational Science — ICCS 2001

Computational Science — ICCS 2001

Author: Vassil N. Alexandrov

Publisher: Springer

Published: 2003-05-15

Total Pages: 1294

ISBN-13: 3540455450

DOWNLOAD EBOOK

LNCS volumes 2073 and 2074 contain the proceedings of the International Conference on Computational Science, ICCS 2001, held in San Francisco, California, May 27 -31, 2001. The two volumes consist of more than 230 contributed and invited papers that reflect the aims of the conference to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced application of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques.


VLSI Design of Wavelet Transform

VLSI Design of Wavelet Transform

Author: Liang-Gee Chen

Publisher:

Published: 2007

Total Pages: 308

ISBN-13:

DOWNLOAD EBOOK

Discrete wavelet transforms (DWTs) have led the revolutions in image and video coding systems over the past decade. In this book, the DWT is presented from the VLSI design perspective, and the related theories, algorithms, and architectures are discussed for 1D, 2D, and 3D DWT.The book provides a comprehensive analysis and discussion of DWTs and their applications including important materials and the newest developments in wavelet processing. For example, the architecture designs of 2D DWT in JPEG 2000 and the development of motion-compensated temporal filtering (MCTF) are explored.


VLSI

VLSI

Author: Zhongfeng Wang

Publisher: IntechOpen

Published: 2010-02-01

Total Pages: 466

ISBN-13: 9789533070490

DOWNLOAD EBOOK

The process of Integrated Circuits (IC) started its era of VLSI (Very Large Scale Integration) in 1970’s when thousands of transistors were integrated into one single chip. Nowadays we are able to integrate more than a billion transistors on a single chip. However, the term “VLSI” is still being used, though there was some effort to coin a new term ULSI (Ultra-Large Scale Integration) for fine distinctions many years ago. VLSI technology has brought tremendous benefits to our everyday life since its occurrence. VLSI circuits are used everywhere, real applications include microprocessors in a personal computer or workstation, chips in a graphic card, digital camera or camcorder, chips in a cell phone or a portable computing device, and embedded processors in an automobile, et al. VLSI covers many phases of design and fabrication of integrated circuits. For a commercial chip design, it involves system definition, VLSI architecture design and optimization, RTL (register transfer language) coding, (pre- and post-synthesis) simulation and verification, synthesis, place and route, timing analyses and timing closure, and multi-step semiconductor device fabrication including wafer processing, die preparation, IC packaging and testing, et al. As the process technology scales down, hundreds or even thousands of millions of transistors are integrated into one single chip. Hence, more and more complicated systems can be integrated into a single chip, the so-called System-on-chip (SoC), which brings to VLSI engineers ever increasingly challenges to master techniques in various phases of VLSI design. For modern SoC design, practical applications are usually speed hungry. For instance, Ethernet standard has evolved from 10Mbps to 10Gbps. Now the specification for 100Mbps Ethernet is on the way. On the other hand, with the popularity of wireless and portable computing devices, low power consumption has become extremely critical. To meet these contradicting requirements, VLSI designers have to perform optimizations at all levels of design. This book is intended to cover a wide range of VLSI design topics. The book can be roughly partitioned into four parts. Part I is mainly focused on algorithmic level and architectural level VLSI design and optimization for image and video signal processing systems. Part II addresses VLSI design optimizations for cryptography and error correction coding. Part III discusses general SoC design techniques as well as other application-specific VLSI design optimizations. The last part will cover generic nano-scale circuit-level design techniques.


Discrete Wavelet Transformations

Discrete Wavelet Transformations

Author: Patrick J. Van Fleet

Publisher: John Wiley & Sons

Published: 2011-03-01

Total Pages: 570

ISBN-13: 1118030664

DOWNLOAD EBOOK

An "applications first" approach to discrete wavelettransformations Discrete Wavelet Transformations provides readers with a broadelementary introduction to discrete wavelet transformations andtheir applications. With extensive graphical displays, thisself-contained book integrates concepts from calculus and linearalgebra into the construction of wavelet transformations and theirvarious applications, including data compression, edge detection inimages, and signal and image denoising. The book begins with a cursory look at wavelet transformationdevelopment and illustrates its allure in digital signal and imageapplications. Next, a chapter on digital image basics, quantitativeand qualitative measures, and Huffman coding equips readers withthe tools necessary to develop a comprehensive understanding of theapplications. Subsequent chapters discuss the Fourier series,convolution, and filtering, as well as the Haar wavelet transformto introduce image compression and image edge detection. Thedevelopment of Daubechies filtersis presented in addition tocoverage of wavelet shrinkage in the area of image and signaldenoising. The book concludes with the construction of biorthogonalfilters and also describes their incorporation in the JPEG2000image compression standard. The author's "applications first" approach promotes a hands-ontreatment of wavelet transforma-tion construction, and over 400exercises are presented in a multi-part format that guide readersthrough the solution to each problem. Over sixty computer labs andsoftware development projects provide opportunities for readers towrite modules and experiment with the ideas discussed throughoutthe text. The author's software package, DiscreteWavelets, is usedto perform various imaging and audio tasks, compute wavelettransformations and inverses, and visualize the output of thecomputations. Supplementary material is also available via thebook's related Web site, which includes an audio and videorepository, final project modules, and softwarefor reproducingexamples from the book. All software, including theDiscreteWavelets package, is available for use withMathematica®, MATLAB®, and Maple. Discrete Wavelet Transformations strongly reinforces the use ofmathematics in digital data applications, sharpens programmingskills, and provides a foundation for further study of moreadvanced topics, such as real analysis. This book is ideal forcourses on discrete wavelet transforms and their applications atthe undergraduate level and also serves as an excellent referencefor mathematicians, engineers, and scientists who wish to learnabout discrete wavelet transforms at an elementary level.


International Conference on Communication, Computing and Electronics Systems

International Conference on Communication, Computing and Electronics Systems

Author: V. Bindhu

Publisher: Springer Nature

Published: 2021-03-25

Total Pages: 821

ISBN-13: 9813349093

DOWNLOAD EBOOK

This book includes high-quality papers presented at the International Conference on Communication, Computing and Electronics Systems 2020, held at the PPG Institute of Technology, Coimbatore, India, on 21–22 October 2020. The book covers topics such as automation, VLSI, embedded systems, integrated device technology, satellite communication, optical communication, RF communication, microwave engineering, artificial intelligence, deep learning, pattern recognition, Internet of Things, precision models, bioinformatics, and healthcare informatics.