Differential Geometry, Part 2

Differential Geometry, Part 2

Author: Shiing-Shen Chern

Publisher: American Mathematical Soc.

Published: 1975

Total Pages: 455

ISBN-13: 0821802488

DOWNLOAD EBOOK

Contains sections on Complex differential geometry, Partial differential equations, Homogeneous spaces, and Relativity.


Introduction to Differential Geometry

Introduction to Differential Geometry

Author: Joel W. Robbin

Publisher: Springer Nature

Published: 2022-01-12

Total Pages: 426

ISBN-13: 3662643405

DOWNLOAD EBOOK

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.


Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics

Author: Gerd Rudolph

Publisher: Springer Science & Business Media

Published: 2012-11-09

Total Pages: 766

ISBN-13: 9400753454

DOWNLOAD EBOOK

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.


Differential Geometry

Differential Geometry

Author: Loring W. Tu

Publisher: Springer

Published: 2017-06-01

Total Pages: 358

ISBN-13: 3319550845

DOWNLOAD EBOOK

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.


Differential Geometry in the Large

Differential Geometry in the Large

Author: Owen Dearricott

Publisher: Cambridge University Press

Published: 2020-10-22

Total Pages: 401

ISBN-13: 1108812813

DOWNLOAD EBOOK

From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.


Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces

Author: Sigurdur Helgason

Publisher: American Mathematical Soc.

Published: 2001-06-12

Total Pages: 682

ISBN-13: 0821828487

DOWNLOAD EBOOK

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.


Differential Geometry and Lie Groups

Differential Geometry and Lie Groups

Author: Jean Gallier

Publisher: Springer Nature

Published: 2020-08-14

Total Pages: 774

ISBN-13: 3030460401

DOWNLOAD EBOOK

This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors’ companion volume Differential Geometry and Lie Groups: A Second Course.


Manifolds and Differential Geometry

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 690

ISBN-13: 0821848151

DOWNLOAD EBOOK

Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.