Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics

Author: Gerd Rudolph

Publisher: Springer Science & Business Media

Published: 2012-11-09

Total Pages: 766

ISBN-13: 9400753454

DOWNLOAD EBOOK

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.


Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics

Author: Maria Ulan

Publisher: Springer Nature

Published: 2021-02-12

Total Pages: 231

ISBN-13: 3030632539

DOWNLOAD EBOOK

This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.


Differential Geometry For Physicists

Differential Geometry For Physicists

Author: Bo-yu Hou

Publisher: World Scientific Publishing Company

Published: 1997-10-31

Total Pages: 561

ISBN-13: 9813105097

DOWNLOAD EBOOK

This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.


Differential Geometry and Lie Groups for Physicists

Differential Geometry and Lie Groups for Physicists

Author: Marián Fecko

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 11

ISBN-13: 1139458035

DOWNLOAD EBOOK

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.


A Course in Modern Mathematical Physics

A Course in Modern Mathematical Physics

Author: Peter Szekeres

Publisher: Cambridge University Press

Published: 2004-12-16

Total Pages: 620

ISBN-13: 9780521829601

DOWNLOAD EBOOK

This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.


The Geometry of Physics

The Geometry of Physics

Author: Theodore Frankel

Publisher: Cambridge University Press

Published: 2011-11-03

Total Pages: 749

ISBN-13: 1139505610

DOWNLOAD EBOOK

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.


Differential Geometry, Gauge Theories, and Gravity

Differential Geometry, Gauge Theories, and Gravity

Author: M. Göckeler

Publisher: Cambridge University Press

Published: 1989-07-28

Total Pages: 248

ISBN-13: 9780521378215

DOWNLOAD EBOOK

Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.


Geometrical Methods of Mathematical Physics

Geometrical Methods of Mathematical Physics

Author: Bernard F. Schutz

Publisher: Cambridge University Press

Published: 1980-01-28

Total Pages: 272

ISBN-13: 1107268141

DOWNLOAD EBOOK

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.


Elementary Topics in Differential Geometry

Elementary Topics in Differential Geometry

Author: J. A. Thorpe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 1461261538

DOWNLOAD EBOOK

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.