Differential Geometry and Relativity Theory

Differential Geometry and Relativity Theory

Author: RichardL. Faber

Publisher: Routledge

Published: 2017-10-19

Total Pages: 280

ISBN-13: 1351455141

DOWNLOAD EBOOK

Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity


Differential Geometry and Relativity

Differential Geometry and Relativity

Author: M. Cahen

Publisher: Springer Science & Business Media

Published: 1976-12-31

Total Pages: 324

ISBN-13: 9789027707451

DOWNLOAD EBOOK

On the sixtieth birthday of Andre Lichnerowicz a number of his friends, students, and coworkers decided to celebrate this event by preparing a jubilee volume of contributed articles in the two main fields of research marked by Lichnerowicz's work: differential geometry and mathematical physics. It was impossible to reflect in a single book the great variety of subjects tackled by Lichnerowicz. We hope that this book reflects some of the present trends of fields in which he worked, and some of the subjects to which he contributed in his long - and not yet finished - career. This career was very much marked by the influence of his masters, Elie Cartan who introduced him to research in mathematics, mainly in geometry and its relations with mathematical physics, and Georges Darmois who developed his interest in mechanics and physics, especially the theory of relativity and electromagnetism. This combination, and his personal talent, made him a natural scientific heir and continuator of the French mathematical physics school in the tradition of Henri Poincare. Some of his works would even be best qualified by a new field name, that of physical mathematics: branches of pure mathematics entirely motivated by physics.


Spacetime

Spacetime

Author: Marcus Kriele

Publisher: Springer Science & Business Media

Published: 2003-07-01

Total Pages: 444

ISBN-13: 3540483543

DOWNLOAD EBOOK

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.


Differential Forms and the Geometry of General Relativity

Differential Forms and the Geometry of General Relativity

Author: Tevian Dray

Publisher: CRC Press

Published: 2014-10-20

Total Pages: 324

ISBN-13: 1466510005

DOWNLOAD EBOOK

Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.


Differential Geometry, Gauge Theories, and Gravity

Differential Geometry, Gauge Theories, and Gravity

Author: M. Göckeler

Publisher: Cambridge University Press

Published: 1989-07-28

Total Pages: 248

ISBN-13: 9780521378215

DOWNLOAD EBOOK

Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.


Relativity and Geometry

Relativity and Geometry

Author: Roberto Torretti

Publisher: Courier Corporation

Published: 1996-01-01

Total Pages: 417

ISBN-13: 0486690466

DOWNLOAD EBOOK

Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.


Functional Differential Geometry

Functional Differential Geometry

Author: Gerald Jay Sussman

Publisher: MIT Press

Published: 2013-07-05

Total Pages: 249

ISBN-13: 0262019345

DOWNLOAD EBOOK

An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.


Finsler Geometry, Relativity and Gauge Theories

Finsler Geometry, Relativity and Gauge Theories

Author: G.S. Asanov

Publisher: Springer

Published: 1985

Total Pages: 392

ISBN-13:

DOWNLOAD EBOOK

The methods of differential geometry have been so completely merged nowadays with physical concepts that general relativity may well be considered to be a physical theory of the geometrical properties of space-time. The general relativity principles together with the recent development of Finsler geometry as a metric generalization of Riemannian geometry justify the attempt to systematize the basic techniques for extending general relativity on the basis of Finsler geometry. It is this endeavour that forms the subject matter of the present book. Our exposition reveals the remarkable fact that the Finslerian approach is automatically permeated with the idea of the unification of the geometrical space-time picture with gauge field theory - a circumstance that we try our best to elucidate in this book. The book has been written in such a way that the reader acquainted with the methods of tensor calculus and linear algebra at the graduate level can use it as a manual of Finslerian techniques orientable to applications in several fields. The problems attached to the chapters are also intended to serve this purpose. This notwithstanding, whenever we touch upon the Finslerian refinement or generalization of physical concepts, we assume that the reader is acquainted with these concepts at least at the level of the standard textbooks, to which we refer him or her.