Differential Equations As Models In Science And Engineering

Differential Equations As Models In Science And Engineering

Author: Gregory Richard Baker

Publisher: World Scientific Publishing Company

Published: 2016-07-25

Total Pages: 391

ISBN-13: 9814656992

DOWNLOAD EBOOK

This textbook develops a coherent view of differential equations by progressing through a series of typical examples in science and engineering that arise as mathematical models. All steps of the modeling process are covered: formulation of a mathematical model; the development and use of mathematical concepts that lead to constructive solutions; validation of the solutions; and consideration of the consequences. The volume engages students in thinking mathematically, while emphasizing the power and relevance of mathematics in science and engineering. There are just a few guidelines that bring coherence to the construction of solutions as the book progresses through ordinary to partial differential equations using examples from mixing, electric circuits, chemical reactions and transport processes, among others. The development of differential equations as mathematical models and the construction of their solution is placed center stage in this volume.


The Art of Modeling in Science and Engineering with Mathematica

The Art of Modeling in Science and Engineering with Mathematica

Author: Diran Basmadjian

Publisher: CRC Press

Published: 2006-08-18

Total Pages: 524

ISBN-13: 1482286033

DOWNLOAD EBOOK

Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and


Mathematical Modeling in Science and Engineering

Mathematical Modeling in Science and Engineering

Author: Ismael Herrera

Publisher: John Wiley & Sons

Published: 2012-03-19

Total Pages: 259

ISBN-13: 1118207203

DOWNLOAD EBOOK

A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.


Non-Local Partial Differential Equations for Engineering and Biology

Non-Local Partial Differential Equations for Engineering and Biology

Author: Nikos I. Kavallaris

Publisher: Springer

Published: 2017-11-28

Total Pages: 310

ISBN-13: 3319679449

DOWNLOAD EBOOK

This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.


Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers

Author: Lokenath Debnath

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 602

ISBN-13: 1489928464

DOWNLOAD EBOOK

This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.


Differential Equations

Differential Equations

Author: Christian Constanda

Publisher: Springer

Published: 2017-03-14

Total Pages: 300

ISBN-13: 3319502247

DOWNLOAD EBOOK

This textbook is designed with the needs of today’s student in mind. It is the ideal textbook for a first course in elementary differential equations for future engineers and scientists, including mathematicians. This book is accessible to anyone who has a basic knowledge of precalculus algebra and differential and integral calculus. Its carefully crafted text adopts a concise, simple, no-frills approach to differential equations, which helps students acquire a solid experience in many classical solution techniques. With a lighter accent on the physical interpretation of the results, a more manageable page count than comparable texts, a highly readable style, and over 1000 exercises designed to be solved without a calculating device, this book emphasizes the understanding and practice of essential topics in a succinct yet fully rigorous fashion. Apart from several other enhancements, the second edition contains one new chapter on numerical methods of solution. The book formally splits the "pure" and "applied" parts of the contents by placing the discussion of selected mathematical models in separate chapters. At the end of most of the 246 worked examples, the author provides the commands in Mathematica® for verifying the results. The book can be used independently by the average student to learn the fundamentals of the subject, while those interested in pursuing more advanced material can regard it as an easily taken first step on the way to the next level. Additionally, practitioners who encounter differential equations in their professional work will find this text to be a convenient source of reference.


Scaling of Differential Equations

Scaling of Differential Equations

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2016-06-15

Total Pages: 149

ISBN-13: 3319327267

DOWNLOAD EBOOK

The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.


Difference Equations For Scientists And Engineering: Interdisciplinary Difference Equations

Difference Equations For Scientists And Engineering: Interdisciplinary Difference Equations

Author: Michael A Radin

Publisher: World Scientific

Published: 2019-09-24

Total Pages: 330

ISBN-13: 9811202982

DOWNLOAD EBOOK

'Radlin has done a nice job in producing a textbook which provides a learner friendly introduction to difference equations. It would suit as a core text for a first year course in the topic, aimed, as the title suggests, at physical science or engineering undergraduates. The student who is prepared to work through the book will get a good grounding in basic techniques and gain a feel for the possible behaviours of standard equations. He will also be given some indication of the usefulness and potential complexity of discrete systems in modern science and engineering.'London Mathematical SocietyWe introduce interdisciplinary research and get students and the audience familiarized with the difference equations; solving them explicitly, determining the long-term behavior of solutions (convergence, boundedness and periodicity). We help to develop intuition in analyzing convergence of solutions in terms of subsequences and analyzing patterns of periodic cycles. Our book helps you learn applications in biology, economics and business, computer science and engineering.


Numerical Partial Differential Equations for Environmental Scientists and Engineers

Numerical Partial Differential Equations for Environmental Scientists and Engineers

Author: Daniel R. Lynch

Publisher: Springer Science & Business Media

Published: 2006-06-02

Total Pages: 390

ISBN-13: 0387236201

DOWNLOAD EBOOK

For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.