Differential Equation Solutions with MATLAB®

Differential Equation Solutions with MATLAB®

Author: Dingyü Xue

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-04-06

Total Pages: 417

ISBN-13: 3110675315

DOWNLOAD EBOOK

This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.


Differential Equations and Linear Algebra

Differential Equations and Linear Algebra

Author: Gilbert Strang

Publisher: Wellesley-Cambridge Press

Published: 2015-02-12

Total Pages: 0

ISBN-13: 9780980232790

DOWNLOAD EBOOK

Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.


Differential Equation Solutions with MATLAB®

Differential Equation Solutions with MATLAB®

Author: Dingyü Xue

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-04-06

Total Pages: 451

ISBN-13: 3110675250

DOWNLOAD EBOOK

This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.


Solving ODEs with MATLAB

Solving ODEs with MATLAB

Author: Lawrence F. Shampine

Publisher: Cambridge University Press

Published: 2003-04-28

Total Pages: 276

ISBN-13: 9780521530941

DOWNLOAD EBOOK

This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.


Computational Partial Differential Equations Using MATLAB®

Computational Partial Differential Equations Using MATLAB®

Author: Jichun Li

Publisher: CRC Press

Published: 2019-09-26

Total Pages: 423

ISBN-13: 0429556535

DOWNLOAD EBOOK

In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB. Key Selling Points: A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering. This course is taught in every university throughout the world with an engineering department or school. Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.


Numerical Computing with MATLAB

Numerical Computing with MATLAB

Author: Cleve B. Moler

Publisher: SIAM

Published: 2010-08-12

Total Pages: 340

ISBN-13: 0898716608

DOWNLOAD EBOOK

A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.


Introduction to Partial Differential Equations with MATLAB

Introduction to Partial Differential Equations with MATLAB

Author: Jeffery Cooper

Publisher: Springer Science & Business Media

Published: 1998-12-18

Total Pages: 564

ISBN-13: 0817639675

DOWNLOAD EBOOK

Intended for undergraduate students in math, science, and engineering, this text uses MATLAB software to expand the introduction of differential equations from the core topics of solution techniques for boundary value problems with constant coefficients to topics less common for an introductory text such as nonlinear problems and brief discussions of numerical methods. The Schrodinger equation is dicussed as a dispersive equation and the LaPlace and Poisson equations are treated. Finite difference schemes are used to compute solutions. Some mfiles to implement basic finite difference schemes have been included. Annotation copyrighted by Book News, Inc., Portland, OR


Computational Partial Differential Equations Using MATLAB

Computational Partial Differential Equations Using MATLAB

Author: Jichun Li

Publisher: CRC Press

Published: 2008-10-20

Total Pages: 376

ISBN-13: 1420089056

DOWNLOAD EBOOK

This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical