Differential and Integral Inequalities: Theory and Applications

Differential and Integral Inequalities: Theory and Applications

Author: V. Lakshmikantham

Publisher: Academic Press

Published: 1969

Total Pages: 405

ISBN-13: 0080955630

DOWNLOAD EBOOK

This volume constitutes the first part of a monograph on theory and applications of differential and integral inequalities. 'The entire work, as a whole, is intended to be a research monograph, a guide to the literature, and a textbook for advanced courses. The unifying theme of this treatment is a systematic development of the theory and applicationsof differential inequalities as well as Volterra integral inequalities. The main tools for applications are the norm and the Lyapunov functions. Familiarity with real and complex analysis, elements of general topology and functional analysis, and differential and integral equations is assumed.


Differential and Integral Inequalities

Differential and Integral Inequalities

Author: Dorin Andrica

Publisher: Springer Nature

Published: 2019-11-14

Total Pages: 848

ISBN-13: 3030274071

DOWNLOAD EBOOK

Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.


Differential and Integral Inequalities

Differential and Integral Inequalities

Author: Wolfgang Walter

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 364

ISBN-13: 3642864058

DOWNLOAD EBOOK

In 1964 the author's mono graph "Differential- und Integral-Un gleichungen," with the subtitle "und ihre Anwendung bei Abschätzungs und Eindeutigkeitsproblemen" was published. The present volume grew out of the response to the demand for an English translation of this book. In the meantime the literature on differential and integral in equalities increased greatly. We have tried to incorporate new results as far as possible. As a matter of fact, the Bibliography has been almost doubled in size. The most substantial additions are in the field of existence theory. In Chapter I we have included the basic theorems on Volterra integral equations in Banach space (covering the case of ordinary differential equations in Banach space). Corresponding theorems on differential inequalities have been added in Chapter II. This was done with a view to the new sections; dealing with the line method, in the chapter on parabolic differential equations. Section 35 contains an exposition of this method in connection with estimation and convergence. An existence theory for the general nonlinear parabolic equation in one space variable based on the line method is given in Section 36. This theory is considered by the author as one of the most significant recent applications of in equality methods. We should mention that an exposition of Krzyzanski's method for solving the Cauchy problem has also been added. The numerous requests that the new edition include a chapter on elliptic differential equations have been satisfied to some extent.


Fractional Differentiation Inequalities

Fractional Differentiation Inequalities

Author: George A. Anastassiou

Publisher: Springer Science & Business Media

Published: 2009-05-28

Total Pages: 672

ISBN-13: 0387981284

DOWNLOAD EBOOK

In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.


Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations

Author: A.A. Kilbas

Publisher: Elsevier

Published: 2006-02-16

Total Pages: 550

ISBN-13: 9780444518323

DOWNLOAD EBOOK

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.


Integral and Discrete Inequalities and Their Applications

Integral and Discrete Inequalities and Their Applications

Author: Yuming Qin

Publisher: Birkhäuser

Published: 2016-10-08

Total Pages: 1000

ISBN-13: 3319333011

DOWNLOAD EBOOK

This book focuses on one- and multi-dimensional linear integral and discrete Gronwall-Bellman type inequalities. It provides a useful collection and systematic presentation of known and new results, as well as many applications to differential (ODE and PDE), difference, and integral equations. With this work the author fills a gap in the literature on inequalities, offering an ideal source for researchers in these topics. The present volume is part 1 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.