Dielectric Materials for Wireless Communication

Dielectric Materials for Wireless Communication

Author: Mailadil T. Sebastian

Publisher: Elsevier

Published: 2010-07-07

Total Pages: 689

ISBN-13: 0080560504

DOWNLOAD EBOOK

Microwave dielectric materials play a key role in our global society with a wide range of applications, from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellite. A small ceramic component made from a dielectric material is fundamental to the operation of filters and oscillators in several microwave systems. In microwave communications, dielectric resonator filters are used to discriminate between wanted and unwanted signal frequencies in the transmitted and received signal. When the wanted frequency is extracted and detected, it is necessary to maintain a strong signal. For clarity it is also critical that the wanted signal frequencies are not affected by seasonal temperature changes. In order to meet the specifications of current and future systems, improved or new microwave components based on dedicated dielectric materials and new designs are required. The recent progress in microwave telecommunication, satellite broadcasting and intelligent transport systems (ITS) has resulted in an increased demand for Dielectric Resonators (DRs). With the recent revolution in mobile phone and satellite communication systems using microwaves as the propagation media, the research and development in the field of device miniaturization has been a major challenge in contemporary Materials Science. In a mobile phone communication, the message is sent from a phone to the nearest base station, and then on via a series of base stations to the other phone. At the heart of each base station is the combiner/filter unit which has the job of receiving the messages, keeping them separate, amplifying the signals and sending then onto the next base station. For such a microwave circuit to work, part of it needs to resonate at the specific working frequency. The frequency determining component (resonator) used in such a high frequency device must satisfy certain criteria. The three important characteristics required for a dielectric resonator are (a) a high dielectric constant which facilitates miniaturization (b) a high quality factor (Qxf) which improves the signal-to-noise ratio, (c) a low temperature coefficient of the resonant frequency which determines the stability of the transmitted frequency. During the past 25 years scientists the world over have developed a large number of new materials (about 3000) or improved the properties of known materials. About 5000 papers have been published and more than 1000 patents filed in the area of dielectric resonators and related technologies. This book brings the data and science of these several useful materials together, which will be of immense benefit to researchers and engineers the world over. The topics covered in the book includes factors affecting the dielectric properties, measurement of dielectric properties, important low loss dielectric material systems such as perovskites, tungsten bronze type materials, materials in BaO-TiO2 system, (Zr,Sn)TiO4, alumina, rutile, AnBn-1O3n type materials, LTCC, ceramic-polymer composites etc. The book also has a data table listing all reported low loss dielectric materials with properties and references arranged in the order of increasing dielectric constant. - Collects together in one source data on all new materials used in wireless communication - Includes tabulated properties of all reported low loss dielectric materials - In-depth treatment of dielectric resonator materials


Microwave Materials and Applications

Microwave Materials and Applications

Author: Mailadil T. Sebastian

Publisher: John Wiley & Sons

Published: 2017-03-02

Total Pages: 997

ISBN-13: 1119208564

DOWNLOAD EBOOK

Die jüngsten Fortschritte im Bereich der drahtlosen Telekommunikation und dem Internet der Dinge sorgen bei drahtlosen Systemen, beim Satellitenfernsehen und bei intelligenten Transportsystemen der 5. Generation für eine höhere Nachfrage nach dielektrischen Materialien und modernen Fertigungstechniken. Diese Materialien bieten ausgezeichnete elektrische, dielektrische und thermische Eigenschaften und verfügen über enormes Potenzial, vor allem bei der drahtlosen Kommunikation, bei flexibler Elektronik und gedruckter Elektronik. Microwave Materials and Applications erläutert die herkömmlichen Methoden zur Messung der dielektrischen Eigenschaften im Mikrowellenbereich, die verschiedenen Ansätze zur Lösung von Problemen der Materialchemie und von Kristallstrukturen, in den Bereichen Doping, Substitution und Aufbau von Verbundwerkstoffen. Besonderer Schwerpunkt liegt auf Verarbeitungstechniken, Einflüssen der Morphologie und der Anwendung von Materialien in der Mikrowellentechnik. Gleichzeitig werden viele der jüngsten Forschungserkenntnisse bei Mikrowellen-Dielektrika und -Anwendungen zusammengefasst. Die verschiedenen Kapitel untersuchen: Oxidkeramiken für dielektrische Resonatoren und Substrate, HTCC-, LTCC- und ULTCC-Bänder für Substrate, Polymer-Keramik-Verbundstoffe für Leiterplatten, Elastomer-Keramik-Verbundstoffe für flexible Elektronik, dielektrische Tinten, Materialien für die EMV-Abschirmung, Mikrowellen-Ferrite. Ein umfassender Anhang präsentiert die grundlegenden Eigenschaften von mehr als 4000 verlustarmen dielektrischen Keramiken, deren Zusammensetzung, kristalline Struktur und dielektrischen Eigenschaften für Mikrowellenanwendungen. Microwave Materials and Applications wirft einen Blick auf sämtliche Aspekte von Mikrowellenmaterialien und -anwendungen, ein nützliches Handbuch für Wissenschaftler, Unternehmen, Ingenieure und Studenten, die sich mit heutigen und neuen Anwendungen in den Bereichen drahtlose Kommunikation und Unterhaltungselektronik beschäftigen.


Microwave Materials and Applications

Microwave Materials and Applications

Author: Mailadil T. Sebastian

Publisher: John Wiley & Sons

Published: 2017-03-02

Total Pages: 1000

ISBN-13: 1119208556

DOWNLOAD EBOOK

The recent rapid progress in wireless telecommunication, including the Internet of Things, 5th generation wireless systems, satellite broadcasting, and intelligent transport systems has increased the need for low-loss dielectric materials and modern fabrication techniques. These materials have excellent electrical, dielectric, and thermal properties and have enormous potential, especially in wireless communication, flexible electronics, and printed electronics. Microwave Materials and Applications discusses the methods commonly employed for measuring microwave dielectric properties, the various attempts reported to solve problems of materials chemistry and crystal structure, doping, substitution, and composite formation, highlighting the processing techniques, morphology influences, and applications of microwave materials whilst summarizing many of the recent technical research accomplishments in the area of microwave dielectrics and applications Chapters examine: Oxide ceramics for dielectric resonators and substrates HTCC, LTCC and ULTCC tapes for substrates Polymer ceramic composites for printed circuit boards Elastomer-ceramic composites for flexible electronics Dielectric inks EMI shielding materials Microwave ferrites A comprehensive Appendix presents the fundamental properties for more than 4000 low-loss dielectric ceramics, their composition, crystal structure, and their microwave dielectric properties. Microwave Materials and Applications presents a comprehensive view of all aspects of microwave materials and applications, making it useful for scientists, industrialists, engineers, and students working on current and emerging applications of wireless communications and consumer electronics.


Dielectric Spectroscopy of Electronic Materials

Dielectric Spectroscopy of Electronic Materials

Author: Yuriy Poplavko

Publisher: Woodhead Publishing

Published: 2021-07-06

Total Pages: 377

ISBN-13: 0128236442

DOWNLOAD EBOOK

Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics incorporates the results of four decades of research and applications of dielectric spectroscopy for solids, mostly for the investigation of materials used in electronics. The book differs from others by more detailed analysis of the features of dielectric spectra conditioned by specific mechanisms of electrical polarization and conductivity. Some original methods are presented in the simulation of frequency distributions (relaxers and oscillators), with methods proposed for various ferroelectrics frequency-temperature dielectric spectra. Also described are original methods for ferroelectrics on microwaves investigation, including the features of thin films study. The book is not burdened by complex mathematical proofs and should help readers quickly understand how to apply dielectric spectroscopy methods to their own research problems. More advanced readers may also find this book valuable as a review of the key concepts and latest advances on the topics presented. - Introduces critical material characterization techniques by an expert with more than 40 years of experience in dielectric spectroscopy - Reviews advances in dielectric spectroscopy methods to enable advances such as the miniaturization of electronics at the nanoscale - Provides an overview of polarization mechanisms utilizing different models (i.e., oscillator and relaxation)


Microwave Resonators and Filters for Wireless Communication

Microwave Resonators and Filters for Wireless Communication

Author: M. Makimoto

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 170

ISBN-13: 3662043254

DOWNLOAD EBOOK

This book describes the basic theory of microwave resonators and filters, and practical design methods for wireless communication equipment. The microwave resonators and filters described provide a basis for building more compact, lighter-weight mobile communication equipment with longer operating times.


Antenna Technology for Terahertz Wireless Communication

Antenna Technology for Terahertz Wireless Communication

Author: Uri Nissanov

Publisher: Springer Nature

Published: 2023-07-11

Total Pages: 329

ISBN-13: 3031359003

DOWNLOAD EBOOK

This book discusses terahertz (THz) wireless communication, particularly for 6G enabling technologies, including antenna design, and channel modeling with channel characteristics for the success of reliable 6G wireless communication. The authors describe THz microstrip antenna technologies with different substrates and introduce some useful substrates to reduce the conductor and substrate losses at the THz frequencies. The discussion also includes the design of the THz unit-cell microstrip antenna and the techniques to boost the microstrip antennas' gain, directivity, and impedance bandwidth (BW), which influence the wireless communication range which is highly affected by the path losses of atmospheric conditions, and transmit and receive data rates, respectively. Moreover, this book discusses the multi-beam and beamforming THz antenna technologies with the multi-user-multiple-input-multiple-output (MU-MIMO) features. Additionally, this book describes the reconfigurable capabilities, artificial intelligence, machine learning, and deep learning technologies that will influence the success of 6G wireless communication and the authors suggest a remedy for integrating multiple radios into the system-on-chip (SoC) design.


Proceedings of the Sixth International Symposium on Dielectric Materials and Applications (ISyDMA’6)

Proceedings of the Sixth International Symposium on Dielectric Materials and Applications (ISyDMA’6)

Author: Ashok Vaseashta

Publisher: Springer Nature

Published: 2022-09-25

Total Pages: 279

ISBN-13: 3031113977

DOWNLOAD EBOOK

This book addresses to the materials scientists, physicists, chemists, biologists, and electrical engineers engaged in fundamental and applied research or technical investigations on such materials. The goal of the International Symposium on Dielectric Materials and Applications conference series is to provide an innovative platform for key researchers, scientists from all over the world to exchange ideas and to hold wide ranging discussions on recent developments in dielectric materials and their new and emerging applications. The aim of ISyDMA meeting is to provide an international forum for the discussion of current research on high k-dielectric, electrical insulation, dielectric phenomena, and topics related to emerging applications.


Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems

Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems

Author: Mehta, Shilpa

Publisher: IGI Global

Published: 2023-08-18

Total Pages: 384

ISBN-13: 1668482886

DOWNLOAD EBOOK

Metamaterials and metasurfaces are enabling modern 5G/6G wireless systems to achieve high performance while maintaining efficient costs and sizes. In the wireless industry, transmission lines play a fundamental role in the development of guided wave elements, antennas, radio frequency identification (RFID) tags, and sensors whose efficiency may be enhanced using metamaterials. Additionally, a metamaterial absorber can solve the bandwidth issue of the internet of things (IoTs) backhaul network. Metasurfaces are also potential candidates for implementing reconfigurable intelligent surfaces (RISs) due to their special wireless communication capabilities. Metamaterial Technology and Intelligent Metasurfaces for Wireless Communication Systems compiles and promotes metamaterials research and sheds light on how metamaterials and metasurfaces will be used in the 5G era and beyond. Covering topics such as active and passive metamaterials, metasurfaces-inspired antennas, and metamaterials for RFID and sensors, this book is ideal for researchers, students, academicians, and professionals.


Handbook of Antennas in Wireless Communications

Handbook of Antennas in Wireless Communications

Author: Lal Chand Godara

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 936

ISBN-13: 1420042149

DOWNLOAD EBOOK

The move toward worldwide wireless communications continues at a remarkable pace, and the antenna element of the technology is crucial to its success. With contributions from more than 30 international experts, the Handbook of Antennas in Wireless Communications brings together all of the latest research and results to provide engineering professionals and students with a one-stop reference on the theory, technologies, and applications for indoor, hand-held, mobile, and satellite systems. Beginning with an introduction to wireless communications systems, it offers an in-depth treatment of propagation prediction and fading channels. It then explores antenna technology with discussion of antenna design methods and the various antennas in current use or development for base stations, hand held devices, satellite communications, and shaping beams. The discussions then move to smart antennas and phased array technology, including details on array theory and beamforming techniques. Space diversity, direction-of-arrival estimation, source tracking, and blind source separation methods are addressed, as are the implementation of smart antennas and the results of field trials of systems using smart antennas implemented. Finally, the hot media topic of the safety of mobile phones receives due attention, including details of how the human body interacts with the electromagnetic fields of these devices. Its logical development and extensive range of diagrams, figures, and photographs make this handbook easy to follow and provide a clear understanding of design techniques and the performance of finished products. Its unique, comprehensive coverage written by top experts in their fields promises to make the Handbook of Antennas in Wireless Communications the standard reference for the field.