Didactics of Mathematics as a Scientific Discipline describes the state of the art in a new branch of science. Starting from a general perspective on the didactics of mathematics, the 30 original contributions to the book, drawn from 10 different countries, go on to identify certain subdisciplines and suggest an overall structure or `topology' of the field. The book is divided into eight sections: (1) Preparing Mathematics for Students; (2) Teacher Education and Research on Teaching; (3) Interaction in the Classroom; (4) Technology and Mathematics Education; (5) Psychology of Mathematical Thinking; (6) Differential Didactics; (7) History and Epistemology of Mathematics and Mathematics Education; (8) Cultural Framing of Teaching and Learning Mathematics. Didactics of Mathematics as a Scientific Discipline is required reading for all researchers into the didactics of mathematics, and contains surveys and a variety of stimulating reflections which make it extremely useful for mathematics educators and teacher trainers interested in the theory of their practice. Future and practising teachers of mathematics will find much to interest them in relation to their daily work, especially as it relates to the teaching of different age groups and ability ranges. The book is also recommended to researchers in neighbouring disciplines, such as mathematics itself, general education, educational psychology and cognitive science.
"Didactics of mathematics has been recently considered, for less than a century, as scientific discipline as itself. The study of this discipline has significantly grown in the last decades since many authors have focused their efforts in the study of the relations of the knowledge and the processes of teaching-learning of mathematics. This book presents eight original contributions of authors from ten different universities, and even from different countries, related to (1) Learning and metacognition; (2) A methodology to teach mathematics; (3) A study related to mathematics in China; (4) Collaborative learning in Mathematics in Secondary Education; (5) Intervention to teach notable products in Secondary Education; (6) The use of holography in geometry teaching in Secondary Education; (7) Problem Based Learning in University for advanced mathematics teaching; (8) Flip teaching in University. This monograph is required reading for all researchers in mathematics education and contains different useful material for mathematics educators and teacher trainers interested in the theory and practice of mathematics education. As such this monograph is suitable to teachers of mathematics in different educational levels. Researchers, graduate students and seminars will find this book really helpful for their daily work. This book is also recommended to researchers in different disciplines, such as general education, didactics or general mathematics"--
This open access book discusses several didactic traditions in mathematics education in countries across Europe, including France, the Netherlands, Italy, Germany, the Czech and Slovakian Republics, and the Scandinavian states. It shows that while they all share common features both in the practice of learning and teaching at school and in research and development, they each have special features due to specific historical and cultural developments. The book also presents interesting historical facts about these didactic traditions, the theories and examples developed in these countries.
This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account.
Didactics of Mathematics as a Scientific Discipline describes the state of the art in a new branch of science. Starting from a general perspective on the didactics of mathematics, the 30 original contributions to the book, drawn from 10 different countries, go on to identify certain subdisciplines and suggest an overall structure or `topology' of the field. The book is divided into eight sections: (1) Preparing Mathematics for Students; (2) Teacher Education and Research on Teaching; (3) Interaction in the Classroom; (4) Technology and Mathematics Education; (5) Psychology of Mathematical Thinking; (6) Differential Didactics; (7) History and Epistemology of Mathematics and Mathematics Education; (8) Cultural Framing of Teaching and Learning Mathematics. Didactics of Mathematics as a Scientific Discipline is required reading for all researchers into the didactics of mathematics, and contains surveys and a variety of stimulating reflections which make it extremely useful for mathematics educators and teacher trainers interested in the theory of their practice. Future and practising teachers of mathematics will find much to interest them in relation to their daily work, especially as it relates to the teaching of different age groups and ability ranges. The book is also recommended to researchers in neighbouring disciplines, such as mathematics itself, general education, educational psychology and cognitive science.
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* This open access book is the product of ICMI Study 22 Task Design in Mathematics Education. The study offers a state-of-the-art summary of relevant research and goes beyond that to develop new insights and new areas of knowledge and study about task design. The authors represent a wide range of countries and cultures and are leading researchers, teachers and designers. In particular, the authors develop explicit understandings of the opportunities and difficulties involved in designing and implementing tasks and of the interfaces between the teaching, researching and designing roles – recognising that these might be undertaken by the same person or by completely separate teams. Tasks generate the activity through which learners meet mathematical concepts, ideas, strategies and learn to use and develop mathematical thinking and modes of enquiry. Teaching includes the selection, modification, design, sequencing, installation, observation and evaluation of tasks. The book illustrates how task design is core to effective teaching, whether the task is a complex, extended, investigation or a small part of a lesson; whether it is part of a curriculum system, such as a textbook, or promotes free standing activity; whether the task comes from published source or is devised by the teacher or the student.
A range of topical issues and concerns at the forefront of research in science education in Europe are examined in this text. The contributors are science educators and researchers from throughout Europe.
The First Sourcebook on Nordic Research in Mathematics Education: Norway, Sweden, Iceland, Denmark and contributions from Finland provides the first comprehensive and unified treatment of historical and contemporary research trends in mathematics education in the Nordic world. The book is organized in sections co-ordinated by active researchers in mathematics education in Norway, Sweden, Iceland, Denmark, and Finland. The purpose of this sourcebook is to synthesize and survey the established body of research in these countries with findings that have influenced ongoing research agendas, informed practice, framed curricula and policy. The sections for each country also include historical articles in addition to exemplary examples of recently conducted research oriented towards the future. The book will serve as a standard reference for mathematics education researchers, policy makers, practitioners and students both in and outside the Nordic countries.
ALAN J. BISHOP Monash University, Clayton, Victoria, Australia RATIONALE Mathematics Education is becoming a well-documented field with many books, journals and international conferences focusing on a variety of aspects relating to theory, research and practice. That documentation also reflects the fact that the field has expanded enormously in the last twenty years. At the 8th International Congress on Mathematics Education (ICME) in Seville, Spain, for example, there were 26 specialist Working Groups and 26 special ist Topic Groups, as well as a host of other group activities. In 1950 the 'Commission Internationale pour I 'Etude et l' Amelioration de l'Enseignement des Mathematiques' (CIEAEM) was formed and twenty years ago another active group, the 'International Group for the Psychology of Mathematics Education' (PME), began at the third ICME at Karlsruhe in 1976. Since then several other specialist groups have been formed, and are also active through regular conferences and publications, as documented in Edward Jacobsen's Chapter 34 in this volume.
The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.