During the past decade, the field of polymer degradation and stabilization has become a subject of central importance in polymer science and technology. This book provides a fundamental source of information designed for those with only a basic understanding of the background of the field.
This volume contains reviews on state-of-the-art Japanese research presented in the annual Spring and Autumn meetings of the Japanese Polymer Science Society. The aim of this section is to make information on the progress of Japanese Polymer Science, and on topics of current interest to polymer scientists in Japan, more easily available worldwide.
The policy adopted in Volume 1 of this series of including a relatively small number of topics for detailed review has been continued here. The techniques selected have received considerable attention in recent years. F or this reason and because of the significance of the characterisation data, further coverage of 13C nuclear magnetic resonance spectroscopy and small angle neutron scattering is given in the first two chapters. In Chapter I a large part of the review describes the determination of monomer sequence distributions and configurational sequences in copolymers formed from more than one polymerisable monomer. The review on neutron scattering (Chapter 2) is directed towards the determination of the chain conformation in semi-crystaIIine polymers, which has provided important results for the interpretation of chain folding and morphology in crystaIIisable polymers. Laser Raman spectroscopy has also been used for morphological studies, and this application together with a description of the theoretical and experimental aspects of the technique is given in Chapter 3. X-ray photoelectron spectroscopy because of its extreme sensitivity to surface characteristics has provided information on polymeric solids that could not be obtained by other techniques. The principles and practice of this ESCA technique, including its use for simple elemental analysis, structural elucidation and depth profiling, are described in Chapter 4. The final two chapters are mainly concerned with the chain conformation of polymers in dilute solution. Ultrasonic techniques (Chapter 5) show pmmise for observing the dynamics of conformational changes.
Chemical modification of polymers by reactive modifiers is no longer an academic curiosity but a commercial reality that has delivered a diverse range of speciality materials for niche markets: reactively grafted styrenic alloys, maleated polyolefins, super-tough nylons, silane modified and moisture-cured polyolefins, and thermoplastic elastomers, are but few exam ples of commercial successes. Although the approach of reactive modification of polymers has been largely achieved either in solution or in the solid state (through in situ reactions in polymer melts), it is the latter route that has attracted most attention in the last two decades owing to its flexibility and cost-effective ness. This route, referred to as reactive processing, focuses on the use of suitable reactive modifier(s) and the adoption of conventional polymer processing machinery, an extruder or a mixer, as a chemical reactor, to perform in situ targeted reactions for chemical modification of preformed polymers. This relatively simple, though scientifically highly challenging, approach to reactive modification offers unique opportunities in exploiting various reactive modifiers for the purpose of altering and transforming in a controlled manner the properties of preformed commercial polymers into new/speciality materials with tailor-made properties and custom-designed performance for target applications. Such an economically attractive route constitutes a radical diversion away from the traditional practices of manufacturing new polymers from monomers which involves massive in vestments in sophisticated technologies and chemical plants.
Supplying nearly 350 expertly-written articles on technologies that can maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques, this second edition provides gold standard articles on the methods, practices, products, and standards recently influencing the chemical industries. New material includes: design of key unit operations involved with chemical processes; design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; current industry practices; and pilot plant design and scale-up criteria.
This second edition Encyclopedia supplies nearly 350 gold standard articles on the methods, practices, products, and standards influencing the chemical industries. It offers expertly written articles on technologies at the forefront of the field to maximize and enhance the research and production phases of current and emerging chemical manufacturing practices and techniques. This collecting of information is of vital interest to chemical, polymer, electrical, mechanical, and civil engineers, as well as chemists and chemical researchers. A complete reconceptualization of the classic reference series the Encyclopedia of Chemical Processing and Design, whose first volume published in 1976, this resource offers extensive A-Z treatment of the subject in five simultaneously published volumes, with comprehensive indexing of all five volumes in the back matter of each tome. It includes material on the design of key unit operations involved with chemical processes; the design, unit operation, and integration of reactors and separation systems; process system peripherals such as pumps, valves, and controllers; analytical techniques and equipment; and pilot plant design and scale-up criteria. This reference contains well-researched sections on automation, equipment, design and simulation, reliability and maintenance, separations technologies, and energy and environmental issues. Authoritative contributions cover chemical processing equipment, engineered systems, and laboratory apparatus currently utilized in the field. It also presents expert overviews on key engineering science topics in property predictions, measurements and analysis, novel materials and devices, and emerging chemical fields. ALSO AVAILABLE ONLINE This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for both researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]
Presenting practical information on new and conventional polymers and products as alternative materials and end-use applications, this work details technological advancements in high-structure plastics and elastomers, functionalized materials, and their product applications. The book also provides a comparison of manufacturing and processing techniques from around the world. It emphasizes product characterization, performance attributes and structural properties.
Covers recent advances in polymer degradation and stabilization. Focuses on the basics of photo- and bio-degradability. Delineates special and general environmental parameters such as solar irradiation, temperature, and agrochemical exposure. Surveys plastic waste disposal strategies such as recycling, incineration, chemical recovery by pyrolysis, and source reduction.
Flexible polyurenthane foams of all types are a unique group of plastics materials, characterized by the fact that a multitude of different sets of properties can be obtained by varying the levels of a relatively small number of base components in the formulations. Different foam grades, primarily characterized by density and hardness, can be obtained by changing the ratio between base polyol, polymer polyol, water, blowing agent, isocyanate and other components. It is not uncommon for foam producers in industrialized countries to manufacture more than one hundred different foam grades based on these basic chemicals, plus the ancillary chemicals needed for optimized processing. This has always made flexible polyurethane foams a highly suitable candidate for correlating these variations in the formulations with the resulting properties in a mathematical way, aimed at predicting the properties as accurately as possible, fine-tuning existing grades or designing new foam grades. This book discusses the methodology for obtaining meaningful equations for correlating properties with formulation variables and other influencing factors