Advances in Research on the Strength and Fracture of Materials

Advances in Research on the Strength and Fracture of Materials

Author: D.M.R. Taplin

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 873

ISBN-13: 1483153428

DOWNLOAD EBOOK

Advances in Research on the Strength and Fracture of Materials: Volume 1s—An Overview contains the proceedings of the Fourth International Conference on Fracture held at the University of Waterloo, Canada, in June 1977. The papers review the state of the art with respect to fracture in a wide range of materials such as metals and alloys, polymers, ceramics, and composites. This volume is comprised of 40 chapters and opens with a discussion on progress in the development of elementary fracture mechanism maps and their application to metal deformation processes, along with micro-mechanisms of fracture and the fracture toughness of engineering alloys. The next section is devoted to the fracture of large-scale structures such as steel structures, aircraft, cargo containment systems, nuclear reactors, and pressure vessels. Fracture at high temperatures and in sensitive environments is then explored, paying particular attention to creep failure by cavitation under non-steady conditions; the effects of hydrogen and impurities on brittle fracture in steel; and mechanism of embrittlement and brittle fracture in liquid metal environments. The remaining chapters consider the fracture of non-metallic materials as well as developments and concepts in the application of fracture mechanics. This book will be of interest to metallurgists, materials scientists, and structural and mechanical engineers.


Elementary engineering fracture mechanics

Elementary engineering fracture mechanics

Author: D. Broek

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 480

ISBN-13: 9400943334

DOWNLOAD EBOOK

When asked to start teaching a course on engineering fracture mechanics, I realized that a concise textbook, giving a general oversight of the field, did not exist. The explanation is undoubtedly that the subject is still in a stage of early development, and that the methodologies have still a very limited applicability. It is not possible to give rules for general application of fracture mechanics concepts. Yet our comprehension of cracking and fracture beha viour of materials and structures is steadily increasing. Further developments may be expected in the not too distant future, enabling useful prediction of fracture safety and fracture characteristics on the basis of advanced fracture mechanics procedures. The user of such advanced procedures m\lst have a general understanding of the elementary concepts, which are provided by this volume. Emphasis was placed on the practical application of fracture mechanics, but it was aimed to treat the subject in a way that may interest both metallurgists and engineers. For the latter, some general knowledge of fracture mechanisms and fracture criteria is indispensable for an apprecia tion of the limita tions of fracture mechanics. Therefore a general discussion is provided on fracture mechanisms, fracture criteria, and other metal lurgical aspects, without going into much detail. Numerous references are provided to enable a more detailed study of these subjects which are still in a stage of speculative treatment.


Topics in Fracture and Fatigue

Topics in Fracture and Fatigue

Author: A.S. Argon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 1461229340

DOWNLOAD EBOOK

Fracture in structural materials remains a vital consideration in engineering systems, affecting the reliability of machines throughout their lives. Impressive advances in both the theoretical understanding of fracture mechanisms and practical developments that offer possibilities of control have re-shaped the subject over the past four decades. The contributors to this volume, including some of the most prominent researchers in the field, give their long-range perspectives of the research on the fracture of solids and its achievements. The subjects covered in this volume include: statistics of brittle fracture, transition of fracture from brittle to ductile, mechanics and mechanisms of ductile separation of heterogenous solids, the crack tip environment in ductile fracture, and mechanisms and mechanics of fatigue. Materials considered range from the usual structural solids to composites. The chapters include both theoretical points of view and discussions of key experiments. Contributors include: from MIT, A.S. Argon, D.M. Parks; from Cambridge, M.F. Ashby; from U.C. Santa Barbara, A.G. Evans, R. McMeeking; from Glasgow, J. Hancock; from Harvard, J.W. Hutchinson, J.R. Rice; from Sheffield, K.J. Miller; from Brown, A. Needleman; from the Ecole des Mines, A. Pineau; from U.C. Berkeley, R. O. Ritchie; and from Copenhagen, V. Tvergaard.


Fracture Mechanics

Fracture Mechanics

Author: Ted L. Anderson

Publisher: CRC Press

Published: 2005-06-24

Total Pages: 630

ISBN-13: 1420058215

DOWNLOAD EBOOK

With its combination of practicality, readability, and rigor that is characteristic of any truly authoritative reference and text, Fracture Mechanics: Fundamentals and Applications quickly established itself as the most comprehensive guide to fracture mechanics available. It has been adopted by more than 100 universities and embraced by thousands of professional engineers worldwide. Now in its third edition, the book continues to raise the bar in both scope and coverage. It encompasses theory and applications, linear and nonlinear fracture mechanics, solid mechanics, and materials science with a unified, balanced, and in-depth approach. Reflecting the many advances made in the decade since the previous edition came about, this indispensable Third Edition now includes: A new chapter on environmental cracking Expanded coverage of weight functions New material on toughness test methods New problems at the end of the book New material on the failure assessment diagram (FAD) method Expanded and updated coverage of crack closure and variable-amplitude fatigue Updated solutions manual In addition to these enhancements, Fracture Mechanics: Fundamentals and Applications, Third Edition also includes detailed mathematical derivations in appendices at the end of applicable chapters; recent developments in laboratory testing, application to structures, and computational methods; coverage of micromechanisms of fracture; and more than 400 illustrations. This reference continues to be a necessity on the desk of anyone involved with fracture mechanics.


Applications and Non-Metals

Applications and Non-Metals

Author: D.M.R. Taplin

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 800

ISBN-13: 1483158179

DOWNLOAD EBOOK

Advances in Research on the Strength and Fracture of Materials: Volume 3Bs—Applications and Non-Metals contains the proceedings of the Fourth International Conference on Fracture, held at the University of Waterloo, Canada, in June 1977. The papers review the state of the art with respect to testing of fracture in a wide range of non-metals such as ceramics, glass, composites, polymers, biomaterials, and concrete. This volume is divided into five sections and opens by discussing the role of acoustic emission in fracture toughness testing and the relation between static and dynamic fracture toughness of structural steels. The reader is then introduced to methods for determining stress-intensity factors of simplified geometries of structural parts; stress analysis of pressure vessels by thermal shock; the fracture toughness of constructional steels in cyclic loading; and fracture processes and fracture toughness in powder forged steels. The remaining chapters explore the influence of low-cycle damage on fracture toughness; fracture of structural alloys at temperatures approaching absolute zero; fracture mechanisms in Si-Al-O-N ceramics; propagation and bifurcation of cracks in quartz; and the effect of pressure and environment on the fracture and yield of polymers. This monograph will be a useful resource for metallurgists, materials scientists, and structural and mechanical engineers.


Fracture Mechanics

Fracture Mechanics

Author: Vladimir Zalmanovich Parton

Publisher: CRC Press

Published: 1992

Total Pages: 230

ISBN-13: 9782881247804

DOWNLOAD EBOOK

An introduction to the mechanics and mathematics of fracture for undergraduates in a wide range of fields, practical engineers, and other inquisitive readers with a background in at least the fundamentals of mechanics and mathematics. Describes the historical development of the fracture-mechanical concepts used today, and how these are applied in industry. Translated from the Russian; about half of the brief bibliography are works in Russian. Annotation copyrighted by Book News, Inc., Portland, OR


The Fracture of Brittle Materials

The Fracture of Brittle Materials

Author: Stephen W. Freiman

Publisher: John Wiley & Sons

Published: 2012-02-03

Total Pages: 197

ISBN-13: 1118147782

DOWNLOAD EBOOK

Supports the use and development of strong, fracture-resistant, and mechanically reliable ceramic materials The Fracture of Brittle Materials thoroughly sets forth the key scientific and engineering concepts underlying the selection of test procedures for fracture toughness, strength determination, and reliability predictions. With this book as their guide, readers can confidently test and analyze a broad range of brittle materials in order to make the best use of existing materials as well as to support the development of new materials. The authors explain the importance of microstructure in these determinations and describe the use of quantitative fractography in failure analysis. The Fracture of Brittle Materials is relevant to a broad range of ceramic materials (i.e., any inorganic non-metal), including semiconductors, cements and concrete, oxides, carbides, and nitrides. The book covers such topics as: Basic principles of fracture mechanics underlying brittle material tests and analysis procedures Theory and mechanisms of environmentally enhanced crack growth Fracture mechanics tests to determine a material's resistance to fast fracture Test and analysis methods to assess the strength of ceramics Methods to analyze the fracture process based on quantitative measurements of the fracture surface Effect of a material's microstructure Methods for predicting the lifetime of brittle components under stress Throughout the book, figures and illustrations help readers understand key concepts and methods. Replete with real-world examples, this text enables engineers and materials and ceramics scientists to select and implement the optimal testing methods for their particular research needs and then accurately analyze the results.