Development of Microbial Ecological Theory: Stability, Plasticity, and Evolution of Microbial Ecosystems

Development of Microbial Ecological Theory: Stability, Plasticity, and Evolution of Microbial Ecosystems

Author: Shin Haruta

Publisher: Frontiers Media SA

Published: 2017-06-01

Total Pages: 158

ISBN-13: 2889451690

DOWNLOAD EBOOK

“How can we develop microbial ecological theory?” The development of microbial ecological theory has a long way to reach its goal. Advances in microbial ecological techniques provide novel insights into microbial ecosystems. Articles in this book are challenging to determine the central and general tenets of the ecological theory that describes the features of microbial ecosystems. Their achievements expand the frontiers of current microbial ecology and propose the next step. Assemblage of these diverse articles hopefully helps to go on this long journey with many avenues for advancement of microbial ecology.


Biotechnological Applications of Extremophilic Microorganisms

Biotechnological Applications of Extremophilic Microorganisms

Author: Natuschka M. Lee

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-10-26

Total Pages: 580

ISBN-13: 3110424363

DOWNLOAD EBOOK

This book provides a broad overview how extremophiles can be used in biotechnology, including for the production and degradation of compounds. It reviews various recent discoveries and applications related to a large variety of extremophiles, considering both prokaryotes as well as eukaryotes.


Microbial Evolution

Microbial Evolution

Author: Howard Ochman

Publisher:

Published: 2016

Total Pages: 0

ISBN-13: 9781621820376

DOWNLOAD EBOOK

Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.


The Social Biology of Microbial Communities

The Social Biology of Microbial Communities

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2013-01-10

Total Pages: 633

ISBN-13: 0309264324

DOWNLOAD EBOOK

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.


The causes and consequences of microbial community structure

The causes and consequences of microbial community structure

Author: Diana Reid Nemergut

Publisher: Frontiers E-books

Published: 2015-01-22

Total Pages: 185

ISBN-13: 2889193616

DOWNLOAD EBOOK

The causes and consequences of differences in microbial community structure, defined here as the relative proportions of rare and abundant organisms within a community, are poorly understood. Articles in “The Causes and Consequences of Microbial Community Structure”, use empirical or modeling approaches as well as literature reviews to enrich our mechanistic understanding of the controls over the relationship between community structure and ecosystem processes. Specifically, authors address the role of trait distributions and tradeoffs, species-species interactions, evolutionary dynamics, community assembly processes and physical controls in affecting ‘who’s there’ and ‘what they are doing.’


Host and Microbe Adaptations in the Evolution of Immunity

Host and Microbe Adaptations in the Evolution of Immunity

Author: Larry J. Dishaw

Publisher: Frontiers Media SA

Published: 2019-12-31

Total Pages: 254

ISBN-13: 2889630226

DOWNLOAD EBOOK

The evolution of metazoans has been accompanied by new interfaces with the microbial environment that include biological barriers and surveillance by specialized cell types. Increasingly complex organisms require increased capacities to confront pathogens, achieved by co-evolution of recognition mechanisms and regulatory pathways. Two distinct but interactive forms of immunity have evolved. Innate immunity, shared by all metazoans, is traditionally viewed as simple and non-specific. Adaptive immunity possesses the capacity to anticipate new infectious challenges and recall previous exposures; the most well-understood example of such a system, exhibited by lymphocytes of vertebrates, is based on somatic gene alterations that generate extraordinary specificity in discrimination of molecular structures. Our understanding of immune phylogeny over the past decades has tried to reconcile immunity from a vertebrate standpoint. While informative, such approaches cannot completely address the complex nature of selective pressures brought to bear by the complex microbiota (including pathogens) that co-exist with all metazoans. In recent years, comparative studies (and new technologies) have broadened our concepts of immunity from a systems-wide perspective. Unexpected findings, e.g., genetic expansions of innate receptors, high levels of polymorphism, RNA-based forms of generating diversity, adaptive evolution and functional divergence of gene families and the recognition of novel mediators of adaptive immunity, prompt us to reconsider the very nature of immunity. Even fundamental paradigms as to how the jawed vertebrate adaptive immune system should be structured for “optimal” recognition potential have been disrupted more than once (e.g., the discovery of the multicluster organization and germline joining of immunoglobulin genes in sharks, gene conversion as a mechanism of somatic diversification, absence of IgM or MHC II in certain teleost fishes). Mechanistically, concepts of innate immune memory, often referred to as “trained memory,” have been realized further, with the development of new discoveries in studies of epigenetic regulation of somatic lineages. Immune systems innovate and adapt in a taxon-specific manner, driven by the complexity of interactions with microbial symbionts (commensals, mutualists and pathogens). Immune systems are shaped by selective forces that reflect consequences of dynamic interactions with microbial environments as well as a capacity for rapid change that can be facilitated by genomic instabilities. We have learned that characterizing receptors and receptor interactions is not necessarily the most significant component in understanding the evolution of immunity. Rather, such a subject needs to be understood from a more global perspective and will necessitate re-consideration of the physical barriers that afford protection and the developmental processes that create them. By far, the most significant paradigm shifts in our understanding of immunity and the infection process has been that microbes no longer are considered to be an automatic cause or consequence of illness, but rather integral components of normal physiology and homeostasis. Immune phylogeny has been shaped not only by an arms race with pathogens but also perhaps by mutualistic interactions with resident microbes. This Research Topic updates and extends the previous eBook on Changing Views of the Evolution of Immunity and contains peer-reviewed submissions of original research, reviews and opinions.


The New Science of Metagenomics

The New Science of Metagenomics

Author: National Research Council

Publisher: National Academies Press

Published: 2007-06-24

Total Pages: 170

ISBN-13: 0309106761

DOWNLOAD EBOOK

Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.


Phenotypic Plasticity

Phenotypic Plasticity

Author: Thomas J. DeWitt

Publisher: Oxford University Press, USA

Published: 2004

Total Pages: 262

ISBN-13: 0195138961

DOWNLOAD EBOOK

Genetic, evolution, adaptation, environment, genotype.


Community Ecology

Community Ecology

Author: Gary G. Mittelbach

Publisher: Oxford University Press

Published: 2019-05-24

Total Pages: 448

ISBN-13: 0192572865

DOWNLOAD EBOOK

Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level.