Development of Flexible Pavement Database for Local Calibration of MEPDG

Development of Flexible Pavement Database for Local Calibration of MEPDG

Author: Zahid Hossain

Publisher:

Published: 2011

Total Pages: 524

ISBN-13:

DOWNLOAD EBOOK

"The new mechanistic-empirical pavement design guide (MEPDG), based on the National Cooperative Highway Research Program (NCHRP) study 1-37A, replaces the widely used but more empirical 1993 AASHTO Guide for Design of Pavement Structures. The MEPDG adopted a mechanistic-empirical pavement analysis and design procedure by using material properties, traffic and climate data for local conditions as input. Among material properties, resilient modulus (Mr) of underlying soil and aggregate layers is one of the most important parameters for the analysis and design of flexible pavements. Also, dynamic modulus (E*) of the asphalt mixes and rheological properties of asphalt binders are needed to predict pavement distresses for its design life. To this end, Mr data of 712 samples from five unbound subgrade soils, 139 samples from four stabilized subgrade soils, and 105 samples from two aggregates in Oklahoma were evaluated to develop stress-based models. Among selected models for unbound subgrade soils, the universal model outperformed other stress-based models. For stabilized soils and aggregates, the octahedral model, recommended by the MEPDG, performed better than the other models. Also, reasonably good correlations were established to predict Mr values of these materials by using routine material properties (i.e., gradation, index properties). Furthermore, MEPDG input parameters of three performance grade (PG) binders, collected from three different refineries in Oklahoma, were determined as per Superpave(R) test methods. It was observed that the rheological properties (i.e., viscosity, dynamic shear modulus (G*)) of the same PG grade binders varied significantly based on their sources. The present study is expected to provide ODOT with useful data and correlations that can be used to calibrate the MEPDG for local materials and conditions."--Technical report documentation page


Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide

Author:

Publisher: AASHTO

Published: 2010

Total Pages: 202

ISBN-13: 1560514493

DOWNLOAD EBOOK

This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.


Development of a Flexible Pavement Database for Local Calibration of MEPDG.

Development of a Flexible Pavement Database for Local Calibration of MEPDG.

Author: Stephen Alan Cross

Publisher:

Published: 2011

Total Pages: 81

ISBN-13:

DOWNLOAD EBOOK

There has been some reluctance on the part of some in Oklahoma to use SMA mixtures. There are several factors that could be involved in the slow acceptance of SMA mixtures in Oklahoma. These factors are 1) the extra expense associated with the higher binder contents and better quality aggregates required, 2) a lack of data indicating that SMA mixtures perform substantially better than conventional Superpave mixtures and 3) a lack guidance on thickness design benefits, including appropriate input parameters for the MEPDG. The objectives this study are to evaluate the performance of SMA mixes compared to S-4 mixes and to determine the performance benefits. Testing included Hamburg Rut Tests and dynamic modulus testing.


Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States

Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States

Author: Shariq A. Momin

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway Research Program (NCHRP) 1-37A project is based on mechanistic-empirical analysis of the pavement structure to predict the performance of the pavement under different sets of conditions (traffic, structure and environment). MEPDG takes into account the advanced modeling concepts and pavement performance models in performing the analysis and design of pavement. The mechanistic part of the design concept relies on the application of engineering mechanics to calculate stresses, strains and deformations in the pavement structure induced by the vehicle loads. The empirical part of the concept is based on laboratory developed performance models that are calibrated with the observed distresses in the in-service pavements with known structural properties, traffic loadings, and performances. These models in the MEPDG were calibrated using a national database of pavement performance data (Long Term Pavement Performance, LTPP) and will provide design solution for pavements with a national average performance. In order to improve the performance prediction of the models and the efficiency of the design for a given state, it is necessary to calibrate it to local conditions by taking into consideration locally available materials, traffic information and the environmental conditions. The objective of this study was to calibrate the MEPDG flexible pavement performance models to local conditions of Northeastern region of United States. To achieve this, seventeen pavement sections were selected for the calibration process and the relevant data (structural, traffic, climatic and pavement performance) was obtained from the LTPP database. MEPDG software (Version 1.1) simulation runs were made using the nationally calibrated coefficients and the MEPDG predicted distresses were compared with the LTPP measured distresses (rutting, alligator and longitudinal cracking, thermal cracking and IRI). The predicted distresses showed fair agreement with the measured distresses but still significant differences were found. The difference between the measured and the predicted distresses were minimized through recalibration of the MEPDG distress models. For the permanent deformation models of each layer, a simple linear regression with no intercept was performed and a new set of model coefficients (ßr1, ßGB, and ßSG) for asphalt concrete, granular base and subgrade layer models were calculated. The calibration of alligator (bottom-up fatigue cracking) and longitudinal (topdown fatigue cracking) was done by deriving the appropriate model coefficients (C1, C2, and C4) since the fatigue damage is given in MEDPG software output. Thermal cracking model was not calibrated since the measured transverse cracking data in the LTPP database did not increase with time, as expected to increase with time. The calibration of IRI model was done by computing the model coefficients (C1, C2, C3, and C4) based on other distresses (rutting, total fatigue cracking, and transverse cracking) by performing a simple linear regression.


Local Calibration of the MEPDG for Flexible Pavement Design

Local Calibration of the MEPDG for Flexible Pavement Design

Author: Y. Richard Kim

Publisher:

Published: 2011

Total Pages: 234

ISBN-13:

DOWNLOAD EBOOK

In an effort to move toward pavement designs that employ mechanistic principles, the AASHTO Joint Task Force on Pavements initiated an effort in 1996 to develop an improved pavement design guide. The project called for the development of a design guide that employs existing state-of-the-practice mechanistic-based models and design procedures. The product of this initiative became available in 2004 in the form of software called the Mechanistic-Empirical Pavement Design Guide (MEPDG). The performance prediction models in the MEPDG were calibrated and validated using performance data measured from hundreds of pavement sections across the United States. However, these nationally calibrated performance models in the MEPDG do not necessarily reflect local materials, local construction practices, and local traffic characteristics. Therefore, in order to produce accurate pavement designs for the State of North Carolina, the MEPDG distress prediction models must be recalibrated using local materials, traffic, and environmental data. The North Carolina Department of Transportation (NCDOT) has decided to adopt the MEPDG for future pavement design work and has awarded a series of research projects to North Carolina State University. The primary objective of this study is to calibrate the MEPDG performance prediction models for local materials and conditions using the data and findings generated from this series of research projects. The work presented in this report focuses on four major topics: (1) the development of a GIS-based methodology to enable the extraction of local subgrade soils data from a national soils database; (2) the rutting and fatigue cracking performance characterization of twelve asphalt mixtures commonly used in North Carolina; (3) the characterization of local North Carolina traffic; and (4) calibration of the flexible pavement distress prediction models in the MEPDG to reflect local materials and conditions.