Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety.
This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.
The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
This book provides an authoritative source of information on the use of nanomaterials to enhance the performance of existing electrochemical energy storage systems and the manners in which new such systems are being made possible. The book covers the state of the art of the design, preparation, and engineering of nanoscale functional materials as effective catalysts and as electrodes for electrochemical energy storage and mechanistic investigation of electrode reactions. It also provides perspectives and challenges for future research. A related book by the same editors is: Nanomaterials for Fuel Cell Catalysis.
Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. - Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volume - Features contributions from the world's leading industry and research experts - Presents executive summaries of specific case studies - Covers information on basic research and application approaches
Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Zinc batteries are an advantageous choice over lithium-based batteries, which have dominated the market for years in multiple areas, most specifically in electric vehicles and other battery-powered devices. Zinc is the fourth most abundant metal in the world, which is influential in its lower cost, making it a very attractive material for use in batteries. Zinc-based batteries have been around since the 1930s, but only now are they taking center stage in the energy, automotive, and other industries. Zinc Batteries: Basics, Developments, and Applicationsis intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zinc (Zn) batteries. This book is an invaluable reference guide for electrochemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy.
With the proliferation of electronic devices, the world will need to double its energy supply by 2050. This book addresses this challenge and discusses synthesis and characterization of carbon nanomaterials for energy conversion and storage. Addresses one of the leading challenges facing society today as we steer away from dwindling supplies of fossil fuels and a rising need for electric power due to the proliferation of electronic products Promotes the use of carbon nanomaterials for energy applications Systematic coverage: synthesis, characterization, and a wide array of carbon nanomaterials are described Detailed descriptions of solar cells, electrodes, thermoelectrics, supercapacitors, and lithium-ion-based storage Discusses special architecture required for energy storage including hydrogen, methane, etc.
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety. - Provides an overview on the application of nanomaterials for energy storage and power systems - Includes a description of the fundamental aspects of the electrochemical process - Explores the new aspects of electrolyte and separator systems
Filling the gap between publications for industrial developers and academic researchers on graphene synthesis and its applications, this book presents the essential aspects for the successful upscaling of graphene production. After an introduction to graphene, its synthesis and characterization, the text covers a wide variety of graphene composites and compounds. The larger part of the book discusses various applications where graphene has been successfully integrated into technologies, including uses in the energy sector, oil and gas industry, biomedical areas, sensors and coatings. Finally, the book concludes with a summary and a look at the future of graphene technology, including a market review. With its focus on applications, this is equally useful for both academic and industrial users.
Advanced Nanomaterials for Aerospace Applications has been developed for a community interested in space science and nanotechnology. Scientists and engineers from several NASA field centers and the Jet Propulsion Laboratory, University of Puerto Rico, The Pennsylvania State University, and INFN-Laboratori Nazionali di Frascati, Italy, have joined efforts to discuss the applications of nanomaterials in sensors, atmosphere revitalization in habitable space platforms, life support systems, regenerative fuel cells, lithium-ion batteries, robust lightweight materials, nanoelectronics, and electromagnetic shielding. The book concludes with chapters that discuss bringing NASA-relevant nanotechnology into the classroom and the future directions in nanotechnology research and development at NASA.