Development and Application of Quadratic Constitutive Relation and Transitional Crossflow Effects in the Wray-Agarwal Turbulence Model

Development and Application of Quadratic Constitutive Relation and Transitional Crossflow Effects in the Wray-Agarwal Turbulence Model

Author: Hakop J. Nagapetyan

Publisher:

Published: 2018

Total Pages: 76

ISBN-13:

DOWNLOAD EBOOK

Computational Fluid Dynamics (CFD) has now become an almost indispensable tool for modern engineering analysis of fluid flow over aircrafts, turbomachinery, automobiles, and many other industrial applications. Accurate prediction of turbulent flows remains a challenging problem. The most popular approach for simulating turbulent flows in complex industrial applications is based on the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations. RANS equations introduce the so called "Reynolds or turbulent stresses" which are generally modeled using the Boussinesq approximation known as "Turbulence modeling." Despite their development over a century, the turbulence models used with RANS equations still need much improvement. The first part of this research introduces the Quadratic Constitutive Relations (QCR), which is a nonlinear approach to approximating the turbulent stresses in eddy-viscosity class of turbulence models. In Boussinesq approximation, turbulent stresses are assumed to be linearly proportional to the strain with eddy viscosity being the proportionality constant. In recent years it has been found that linear eddy viscosity models are not accurate for prediction of vortical flows and wall bounded flows with mild separation with regions of recirculating flows. Such flows occur in junctions of aerodynamic surfaces e.g. the wing-body junction and in inlets and ducts with corners. The accurate prediction of these flows is needed for design improvements and better product performance. To remedy some of the shortcomings of the linear eddy-viscosity models, the Quadratic Constitutive Relation (QCR) for eddy viscosity is investigated to test its capability for predicting non-equilibrium turbulence effects. QCR is implemented in Spalart-Allmaras (SA), SST k-[omega] and Wray-Agarwal (WA) turbulence models and is applied to several applications involving large recirculating regions. It is demonstrated That QCR improves the results compared to linear eddy viscosity models. Another shortcoming of RANS models is their inability to accurately predict regions of transitional flow in a flow field. Many flow regions in industrial applications contain the transitional flow regime e.g. flows over aircraft wings and fuselages, past wind turbines and in gas turbines engines to name a few. The second part of this research has been on the development of a transitional model by suitably combining a correlation based intermittency-[gamma] equation with the WA turbulence model; this new model is designated as Wray-Agarwal-[gamma] (WA-[gamma]) transition model. The WA-[gamma] is extensively validated by computing a number of benchmark cases. The WA-[gamma] model is also extended to include the crossflow-instability induced transition which is a dominant mode of transition in flows involving three-dimensional boundary layers, e.g. flow past swept wings and ellipsoids. This modified WA-[gamma] model is validated using a benchmark test case for analyzing crossflow-induced transition.


Development and Application of Rotation and Curvature Correction to Wray-Agarwal Turbulence Model

Development and Application of Rotation and Curvature Correction to Wray-Agarwal Turbulence Model

Author: Xiao Zhang (Mechanical engineer)

Publisher:

Published: 2018

Total Pages: 99

ISBN-13:

DOWNLOAD EBOOK

Computational Fluid Dynamics (CFD) is increasingly playing a significant role in the analysis and design of aircrafts, turbomachines, automobiles, and in many other industrial applications. In majority of the applications, the fluid flow is generally turbulent. The accurate prediction of turbulent flows to date remains a challenging problem in CFD. In almost all industrial applications, Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a turbulence model are employed for simulation and prediction of turbulent flows. Currently the one-equation (namely the Spalart-Allmaras (SA) and Wray-Agarwal (WA) and two-equation (namely the k-[epsilon] and Shear Stress Transport k-[omega]) turbulence models remain the most widely used models in industry. However, improvements and new developments are needed to improve the accuracy of the turbulence models for wall bounded flows with separation in the presence of adverse pressure gradients, and for flows with rotation and curvature (RC) such as those encountered in turbomachinery, centrifugal pumps and the rotating machinery in other industrial devices. The goal of this research is to enable the eddy-viscosity type turbulence models to accurately account for the rotation and curvature effects. To date, there have been two approaches for inclusion of RC effects in turbulence models, which can be categorized as the "Modified Coefficients Approach" which parameterizes the model coefficients such that the growth rate of turbulent kinetic energy is either suppressed or enhanced depending upon the effect of system rotation and streamline curvature on the pressure gradient in the flow and the "Bifurcation Approach" which parameterizes the eddy-viscosity coefficient such that the equilibrium solution bifurcates from the main branch to decaying solution branches. In this research, the uncertainty quantification (UQ) is applied to examine the sensitivity of RC correction coefficients and the coefficients are modified based on the UQ analysis to improve the model's behavior. Both these approaches are applied to the widely used turbulence models (SA, SST k-[omega] and WA) and they show some improvement in predictions of turbulent flow in all benchmark test cases considered, namely the flow in a 2D curved duct, flow in a 2D U-turn duct, fully developed turbulent flow in a 2D rotating channel, fully developed turbulent flow in a 2D rotating backward-facing step, flow in a rotating cavity, flow in a stationary and rotating serpentine channel, flow in a rotor-stator cavity and in a hydrocyclone as well as two wall-unbounded turbulent flow cases. All the simulations are conducted using the commercial software ANSYS Fluent and the open source CFD software OpenFOAM. The success of this research should enhance the ability of the RANS modeling for more accurate prediction of complex turbulent flows with rotation and curvature effects. In addition to the RANS modeling of RC effects, a new DES model incorporating the WA2017m-RC turbulence model (referred to as the WA2017m-RC-DES model) is developed and validated against experimental and DNS data. Further improvements are obtained with the DES model in some test cases.


Development and Application of Hybrid Wray-Agarwal Turbulence Model and Large-eddy Simulation

Development and Application of Hybrid Wray-Agarwal Turbulence Model and Large-eddy Simulation

Author: Xu Han (Mechanical engineer)

Publisher:

Published: 2018

Total Pages: 101

ISBN-13:

DOWNLOAD EBOOK

Rapid development in computing power in past five decades along with the development and progress in building blocks of Computational Fluid Dynamics (CFD) technology has made CFD an indispensable tool for modern engineering analysis and design of fluid-based products and systems. For CFD analysis, Reynolds-Averaged Navier-Stokes (RANS) equations are currently the most widely used fluid equations in the industry. RANS methods require modeling of turbulence effect (i.e. turbulence modeling) based on empirical relations and therefore often produce low accuracy results for many flows. In recent years, the Large Eddy Simulation (LES) approach has been developed which has shown promise of achieving higher accuracy, however it is computationally very intensive and therefore has remained limited to computing relatively simple flows from low to moderate Reynolds numbers. As a result, a hybrid technique called Detached Eddy Simulation (DES) has been proposed in recent years. This technique has shown improved accuracy and computational efficiency for solution of wide variety of complex turbulent flows. The goal of this dissertation has been to develop a DES model based on a recently proposed very promising RANS model, known as the 'Wray-Agarwal (WA)' model and the LES. Decaying Isotropic Turbulence (DIT) case is computed to determine the coefficient in the DES model by matching its energy spectrum with the Kolmogorov spectrum. The new WA-DES model (DES model based on WA model) is applied to compute a wide variety of wall bounded separated flows to assess it accuracy and computational efficiency compared to the widely used RANS turbulence models in the industry, namely the Spalart-Allmaras (SA) and SST k-[omega] models. Improved Delayed-Detached Eddy Simulation (IDDES) and Elliptic Blending are also considered as further refinements of WA model to improve its accuracy.


Turbulence Modelling Approaches

Turbulence Modelling Approaches

Author: Konstantin Volkov

Publisher: BoD – Books on Demand

Published: 2017-07-26

Total Pages: 252

ISBN-13: 9535133497

DOWNLOAD EBOOK

Accurate prediction of turbulent flows remains a challenging task despite considerable work in this area and the acceptance of CFD as a design tool. The quality of the CFD calculations of the flows in engineering applications strongly depends on the proper prediction of turbulence phenomena. Investigations of flow instability, heat transfer, skin friction, secondary flows, flow separation, and reattachment effects demand a reliable modelling and simulation of the turbulence, reliable methods, accurate programming, and robust working practices. The current scientific status of simulation of turbulent flows as well as some advances in computational techniques and practical applications of turbulence research is reviewed and considered in the book.


Development of a One-equation Eddy Viscosity Turbulence Model for Application to Complex Turbulent Flows

Development of a One-equation Eddy Viscosity Turbulence Model for Application to Complex Turbulent Flows

Author: Timothy J. Wray

Publisher:

Published: 2016

Total Pages: 139

ISBN-13:

DOWNLOAD EBOOK

Computational fluid dynamics (CFD) is routinely used in performance prediction and design of aircraft, turbomachinery, automobiles, and in many other industrial applications. Despite its wide range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in conjunction with a turbulence model. The goal of this research has been to develop an eddy viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated flows, flows with rotation and curvature effects, and flows with surface roughness. It is accomplished by developing a new zonal one-equation turbulence model which relies heavily on the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence model. The effectiveness of the new model is demonstrated by comparing its results with those obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-Stress-Transport k -- [omega] model and experimental data. Results for subsonic, transonic, and supersonic flows in and about complex geometries are presented. It is demonstrated that the Wray-Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable turbulence model for the computation of a large class of complex turbulent flows.


Turbulence Models and Their Application

Turbulence Models and Their Application

Author: Tuncer Cebeci

Publisher: Springer Science & Business Media

Published: 2003-12-04

Total Pages: 140

ISBN-13: 9783540402886

DOWNLOAD EBOOK

After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.


Modeling Complex Turbulent Flows

Modeling Complex Turbulent Flows

Author: Manuel D. Salas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 385

ISBN-13: 9401147248

DOWNLOAD EBOOK

Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.


Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows

Author: P. A. Durbin

Publisher: John Wiley & Sons

Published: 2011-06-28

Total Pages: 347

ISBN-13: 1119957524

DOWNLOAD EBOOK

Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.


A Simple Two-equation Turbulence Model for Transition-sensitive CFD Simulations of Missile Nose-cone Geometries

A Simple Two-equation Turbulence Model for Transition-sensitive CFD Simulations of Missile Nose-cone Geometries

Author: Joseph Matthew Jones

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This study reports the development and validation of a modified two-equation eddy-viscosity turbulence model for computational fluid dynamics prediction of transitional and turbulent flows. The existing terms of the standard k-w model have been modified to include transitional flow effects, within the framework of Reynolds-averaged, eddy-viscosity turbulence modeling. The new model has been implemented into the commercially available flow solver FLUENT and the Mississippi State University SimCenter developed flow solver U2NCLE. Test cases included flow over a flat plate, a 2-D circular cylinder in a crossflow, a 3-D cylindrical body and three conical geometries, which represent the nose-cones of aerodynamic vehicles such as missiles. The results illustrate the ability of the model to yield reasonable predictions of transitional flow behavior using a simple modeling framework, including an appropriate response to freestream turbulence quantities, boundary-layer separation, and angle of attack.


Transition to Turbulence

Transition to Turbulence

Author: Tapan K. Sengupta

Publisher: Cambridge University Press

Published: 2021-09-30

Total Pages: 643

ISBN-13: 1108490417

DOWNLOAD EBOOK

"Present understanding of transition to turbulence has now been studied over one hundred and fifty years. The path the studies have taken posed it as a modal eigenvalue problem. Some researchers have suggested alternative models without being specific. First-principle based approach of receptivity is the route to build bridges among ideas for solving the Navier-Stokes equation for specific canonical problems. This book highlights the mathematical physics, scientific computing, and new ideas and theories for nonlinear analyses of fluid flows, for which vorticity dynamics remain central. This book is a blend of classic with distinctly new ideas, which establish different dynamics of flows, from genesis to evolution of disturbance fields with rigorously developed methods to tracing coherent structures amidst the seemingly random and chaotic fluid dynamics of transitional and turbulent flows"--