Developing Mathematical Thinking

Developing Mathematical Thinking

Author: Jonathan D. Katz

Publisher: Rowman & Littlefield

Published: 2014-07-07

Total Pages: 145

ISBN-13: 147581058X

DOWNLOAD EBOOK

In this country we have done a poor job of helping students come to see the wonder, beauty and power of mathematics. Standards can be brought into the picture, but unless we think about what it means to truly engage students in mathematics we will continue to be unsuccessful. The goal of this book is to begin to change the way students experience mathematics in the middle and high school classrooms. In this book you will find a theoretical basis for this approach to teaching mathematics, multiple guides and questions for teachers to think about in relation to their everyday teaching, and over 30 examples of problems, lessons, tasks, and projects that been used effectively with urban students.


Introduction to Mathematical Thinking

Introduction to Mathematical Thinking

Author: Keith J. Devlin

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9780615653631

DOWNLOAD EBOOK

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.


Mathematical Thinking

Mathematical Thinking

Author: Masami Isoda

Publisher: World Scientific

Published: 2012

Total Pages: 318

ISBN-13: 9814350834

DOWNLOAD EBOOK

Developing mathematical thinking is one of major aims of mathematics education. In mathematics education research, there are a number of researches which describe what it is and how we can observe in experimental research. However, teachers have difficulties developing it in the classrooms. This book is the result of lesson studies over the past 50 years. It describes three perspectives of mathematical thinking: Mathematical Attitude (Minds set), Mathematical Methods in General and Mathematical Ideas with Content and explains how to develop them in the classroom with illuminating examples.


Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12

Author: Peter Liljedahl

Publisher: Corwin Press

Published: 2020-09-28

Total Pages: 454

ISBN-13: 1544374844

DOWNLOAD EBOOK

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.


Mathematical Mindsets

Mathematical Mindsets

Author: Jo Boaler

Publisher: John Wiley & Sons

Published: 2015-10-12

Total Pages: 320

ISBN-13: 1118415531

DOWNLOAD EBOOK

Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.


Thnking Mathematically

Thnking Mathematically

Author: J Mason

Publisher: Pearson Higher Ed

Published: 2011-01-10

Total Pages: 266

ISBN-13: 027372892X

DOWNLOAD EBOOK

Thinking Mathematically is perfect for anyone who wants to develop their powers to think mathematically, whether at school, at university or just out of interest. This book is invaluable for anyone who wishes to promote mathematical thinking in others or for anyone who has always wondered what lies at the core of mathematics. Thinking Mathematically reveals the processes at the heart of mathematics and demonstrates how to encourage and develop them. Extremely practical, it involves the reader in questions so that subsequent discussions speak to immediate experience.


Routines for Reasoning

Routines for Reasoning

Author: Grace Kelemanik

Publisher: Heinemann Educational Books

Published: 2016

Total Pages: 0

ISBN-13: 9780325078151

DOWNLOAD EBOOK

Routines can keep your classroom running smoothly. Now imagine having a set of routines focused not on classroom management, but on helping students develop their mathematical thinking skills. Routines for Reasoning provides expert guidance for weaving the Standards for Mathematical Practice into your teaching by harnessing the power of classroom-tested instructional routines. Grace Kelemanik, Amy Lucenta, and Susan Janssen Creighton have applied their extensive experience teaching mathematics and supporting teachers to crafting routines that are practical teaching and learning tools. -- Provided by publisher.


Developing Essential Understanding of Mathematical Reasoning for Teaching Mathematics in Prekindergarten-grade 8

Developing Essential Understanding of Mathematical Reasoning for Teaching Mathematics in Prekindergarten-grade 8

Author: John K. Lannin

Publisher: National Council of Teachers of English

Published: 2011

Total Pages: 95

ISBN-13: 9780873536660

DOWNLOAD EBOOK

How do your students determine whether a mathematical statement is true? Do they rely on a teacher, a textbook or various examples? How can you encourage them to connect examples, extend their ideas to new situations that they have not yet considered and reason more generally? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of mathematical reasoning requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about mathematical reasoning. It is organised around one big idea, supported by multiple smaller, interconnected ideas - essential understandings.Taking you beyond a simple introduction to mathematical reasoning, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.


Modeling Mathematical Ideas

Modeling Mathematical Ideas

Author: Jennifer M. Suh

Publisher: Rowman & Littlefield

Published: 2016-12-27

Total Pages: 227

ISBN-13: 1475817606

DOWNLOAD EBOOK

Modeling Mathematical Ideas combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students’ common misconceptions in investigating and discussing important mathematical ideas related to number sense, computational fluency, algebraic thinking and proportional reasoning. In each chapter, the authors opens with a rich real-world mathematical problem and presents classroom strategies (such as visible thinking strategies & technology integration) and other related problems to develop students’ strategic competence in modeling mathematical ideas.