Detection of Optical and Infrared Radiation

Detection of Optical and Infrared Radiation

Author: R. H. Kingston

Publisher: Springer

Published: 2013-04-17

Total Pages: 151

ISBN-13: 3540359486

DOWNLOAD EBOOK

This text treats the fundamentals of optical and infrared detection in terms of the behavior of the radiation field, the physical properties of the detector, and the statistical behavior of the detector output. Both incoherent and coherent detection are treated in a unified manner, after which selected applications are analyzed, following an analysis of atmospheric effects and signal statistics. The material was developed during a one-semester course at M.I.T. in 1975, revised and presented again in 1976 at Lincoln Laboratory, and rewritten for publication in 1977. Chapter 1 reviews the derivation of Planck's thermal radiation law and also presents several fundamental concepts used throughout the text. These include the three thermal distribution laws (Boltzmann, Fermi-Dirac, Bose Einstein), spontaneous and stimulated emission, and the definition and counting of electromagnetic modes of space. Chapter 2 defines and analyzes the perfect photon detector and calculates the ultimate sensitivity in the presence of thermal radiation. In Chapter 3, we turn from incoherent or power detection to coherent or heterodyne detection and use the concept of orthogonal spatial modes to explain the antenna theorem and the mixing theorem. Chapters 4 through 6 then present a detailed analysis of the sensitivity of vacuum and semiconductor detectors, including the effects of amplifier noise.


Radiometry and the Detection of Optical Radiation

Radiometry and the Detection of Optical Radiation

Author: Robert W. Boyd

Publisher: John Wiley & Sons

Published: 1983-05-10

Total Pages: 275

ISBN-13: 047186188X

DOWNLOAD EBOOK

Presents a treatment of fundamental aspects of the generation, transfer and detection of optical and infra-red radiation. Emphasis placed on practical aspects of radiometry in detection. Discusses formal principles of radiometry, signal-to-noise considerations in the detection of optical radiation, and the operation of various radiation detectors. Includes tables and graphs of blackbody functions.


Infrared Detectors

Infrared Detectors

Author: Antonio Rogalski

Publisher: CRC Press

Published: 2010-11-15

Total Pages: 900

ISBN-13: 1420076728

DOWNLOAD EBOOK

Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to un


Detection of Optical Signals

Detection of Optical Signals

Author: Antoni Rogalski

Publisher: CRC Press

Published: 2022-06-09

Total Pages: 551

ISBN-13: 100054348X

DOWNLOAD EBOOK

Detection of Optical Signals provides a comprehensive overview of important technologies for photon detection, from the X-ray through ultraviolet, visible, infrared to far-infrared spectral regions. It uniquely combines perspectives from many disciplines, particularly within physics and electronics, which are necessary to have a complete understanding of optical receivers. This interdisciplinary textbook aims to: Guide readers into more detailed and technical treatments of readout optical signals Give a broad overview of optical signal detection including terahertz region and two-dimensional material Help readers further their studies by offering chapter-end problems and recommended reading. This is an invaluable resource for graduate students in physics and engineering, as well as a helpful refresher for those already working with aerospace sensors and systems, remote sensing, thermal imaging, military imaging, optical telecommunications, infrared spectroscopy, and light detection.


Practical Applications of Infrared Thermal Sensing and Imaging Equipment

Practical Applications of Infrared Thermal Sensing and Imaging Equipment

Author: Herbert Kaplan

Publisher: SPIE Press

Published: 2007

Total Pages: 196

ISBN-13: 9780819467232

DOWNLOAD EBOOK

\- Preface - List of Figures - List of Tables - List of Acronyms and Abbreviations - Preface - Introduction - Basics of Noncontact Thermal Measurement - Matching the Instrument to the Application - Instruments Overview - Using IR Sensing and Imaging Instruments - Introduction to Applications - Plant Condition Monitoring and Predictive Maintenance - Buildings and Infrastructure - Materials Testing - Product and Process Monitoring Control - Night Vision, Security, and Surveillance - Life Sciences Thermography - Appendix A: Commercial Instrument Performance Characteristics - Appendix B: Manufacturers of IR Sensing and Imaging Instruments - Appendix C: Table of Generic Normal Emissivities of Materials - Appendix D: A Glossary of Terms for the Infrared Thermographer


Introduction to Infrared and Electro-Optical Systems, Third Edition

Introduction to Infrared and Electro-Optical Systems, Third Edition

Author: Ronald G. Driggers

Publisher: Artech House

Published: 2022-08-31

Total Pages: 739

ISBN-13: 163081833X

DOWNLOAD EBOOK

This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.