Robustness and Complex Data Structures

Robustness and Complex Data Structures

Author: Claudia Becker

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 377

ISBN-13: 3642354947

DOWNLOAD EBOOK

​This Festschrift in honour of Ursula Gather’s 60th birthday deals with modern topics in the field of robust statistical methods, especially for time series and regression analysis, and with statistical methods for complex data structures. The individual contributions of leading experts provide a textbook-style overview of the topic, supplemented by current research results and questions. The statistical theory and methods in this volume aim at the analysis of data which deviate from classical stringent model assumptions, which contain outlying values and/or have a complex structure. Written for researchers as well as master and PhD students with a good knowledge of statistics.


Forecasting: principles and practice

Forecasting: principles and practice

Author: Rob J Hyndman

Publisher: OTexts

Published: 2018-05-08

Total Pages: 380

ISBN-13: 0987507117

DOWNLOAD EBOOK

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.


Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

Author: Estela Bee Dagum

Publisher: Springer

Published: 2016-06-20

Total Pages: 293

ISBN-13: 3319318225

DOWNLOAD EBOOK

This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling.


Economic Time Series

Economic Time Series

Author: William R. Bell

Publisher: CRC Press

Published: 2018-11-14

Total Pages: 544

ISBN-13: 1439846588

DOWNLOAD EBOOK

Economic Time Series: Modeling and Seasonality is a focused resource on analysis of economic time series as pertains to modeling and seasonality, presenting cutting-edge research that would otherwise be scattered throughout diverse peer-reviewed journals. This compilation of 21 chapters showcases the cross-fertilization between the fields of time s


Mathematical and Statistical Methods for Actuarial Sciences and Finance

Mathematical and Statistical Methods for Actuarial Sciences and Finance

Author: Marco Corazza

Publisher: Springer Nature

Published: 2021-12-13

Total Pages: 389

ISBN-13: 3030789659

DOWNLOAD EBOOK

The cooperation and contamination between mathematicians, statisticians and econometricians working in actuarial sciences and finance is improving the research on these topics and producing numerous meaningful scientific results. This volume presents new ideas, in the form of four- to six-page papers, presented at the International Conference eMAF2020 – Mathematical and Statistical Methods for Actuarial Sciences and Finance. Due to the now sadly famous COVID-19 pandemic, the conference was held remotely through the Zoom platform offered by the Department of Economics of the Ca’ Foscari University of Venice on September 18, 22 and 25, 2020. eMAF2020 is the ninth edition of an international biennial series of scientific meetings, started in 2004 at the initiative of the Department of Economics and Statistics of the University of Salerno. The effectiveness of this idea has been proven by wide participation in all editions, which have been held in Salerno (2004, 2006, 2010 and 2014), Venice (2008, 2012 and 2020), Paris (2016) and Madrid (2018). This book covers a wide variety of subjects: artificial intelligence and machine learning in finance and insurance, behavioral finance, credit risk methods and models, dynamic optimization in finance, financial data analytics, forecasting dynamics of actuarial and financial phenomena, foreign exchange markets, insurance models, interest rate models, longevity risk, models and methods for financial time series analysis, multivariate techniques for financial markets analysis, pension systems, portfolio selection and management, real-world finance, risk analysis and management, trading systems, and others. This volume is a valuable resource for academics, PhD students, practitioners, professionals and researchers. Moreover, it is also of interest to other readers with quantitative background knowledge.


Improving Forecasts with Integrated Business Planning

Improving Forecasts with Integrated Business Planning

Author: Ganesh Sankaran

Publisher: Springer

Published: 2019-03-05

Total Pages: 430

ISBN-13: 3030053814

DOWNLOAD EBOOK

This book provides both a broad overview of the forecasting process, covering technological and human aspects alike, and deep insights into algorithms and platform functionalities in the IBP toolbox required to maximize forecast accuracy. Rich in technical and business explanations, it addresses short-, medium- and long-term forecasting processes using functionalities available in demand planning and demand sensing. There are also several theoretical concepts underpinning the algorithms discussed; these are explained with numerical examples to help demystify the IBP forecasting toolbox. Beyond standard procedures, the book also discusses custom approaches (e.g. new segmentation criteria, new outlier detection and correction methods) and new methods (e.g. the use of Markov chains for forecasting sporadic demands), etc. It subsequently benchmarks common practices using these innovative approaches and discusses the results. As measurement is an important precondition for improvement, an entire chapter is devoted to discussing process improvement and value using the Six Sigma methodology. In closing, the book provides several useful tips and tricks that should come in handy during project implementation.


Multivariate Time Series Analysis and Applications

Multivariate Time Series Analysis and Applications

Author: William W. S. Wei

Publisher: John Wiley & Sons

Published: 2019-03-18

Total Pages: 536

ISBN-13: 1119502853

DOWNLOAD EBOOK

An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.


Bayesian Time Series Models

Bayesian Time Series Models

Author: David Barber

Publisher: Cambridge University Press

Published: 2011-08-11

Total Pages: 432

ISBN-13: 0521196760

DOWNLOAD EBOOK

The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.


Data Mining

Data Mining

Author: Thuc D. Le

Publisher: Springer Nature

Published: 2019-11-22

Total Pages: 266

ISBN-13: 9811516995

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 17th Australasian Conference on Data Mining, AusDM 2019, held in Adelaide, SA, Australia, in December 2019. The 20 revised full papers presented were carefully reviewed and selected from 56 submissions. The papers are organized in sections on research track, application track, and industry showcase.