Detection Efficiency and Bandwidth Optimized Electro-optic Sampling of Mid-infrared Waves

Detection Efficiency and Bandwidth Optimized Electro-optic Sampling of Mid-infrared Waves

Author: Christina Hofer

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9788303115324

DOWNLOAD EBOOK

This thesis investigates the detection efficiency of field-resolved measurements of ultrashort mid-infrared waves via electro-optic sampling for the first time. Employing high-power gate pulses and phase-matched upconversion in thick nonlinear crystals, unprecedented efficiencies are achieved for octave-spanning fields in this wavelength range. In combination with state-of-the art, high-power, ultrashort mid-infrared sources, this allows to demonstrate a new regime of linear detection dynamic range for field strengths from mV/cm to MV/cm-levels. These results crucially contribute to the development of field-resolved spectrometers for early disease detection, as fundamental vibrational modes of (bio-)molecules lie in the investigated spectral range. The results are discussed and compared with previous sensitivity records for electric-field measurements and reference is made to related implementations of the described characterization technique. Including a detailed theoretical description and simulation results, the work elucidates crucial scaling laws, characteristics and limitations. The thesis will thus serve as an educational introduction to the topic of field-resolved measurements using electro-optic sampling, giving detailed instructions on simulations and experimental implementations. At the same time, it showcases the state-of-the-art in terms of detection sensitivity for characterizing mid-infrared waves.


Detection Efficiency and Bandwidth Optimized Electro-Optic Sampling of Mid-Infrared Waves

Detection Efficiency and Bandwidth Optimized Electro-Optic Sampling of Mid-Infrared Waves

Author: Christina Hofer

Publisher: Springer Nature

Published: 2022-10-27

Total Pages: 131

ISBN-13: 3031153286

DOWNLOAD EBOOK

This thesis investigates the detection efficiency of field-resolved measurements of ultrashort mid-infrared waves via electro-optic sampling for the first time. Employing high-power gate pulses and phase-matched upconversion in thick nonlinear crystals, unprecedented efficiencies are achieved for octave-spanning fields in this wavelength range. In combination with state-of-the art, high-power, ultrashort mid-infrared sources, this allows to demonstrate a new regime of linear detection dynamic range for field strengths from mV/cm to MV/cm-levels. These results crucially contribute to the development of field-resolved spectrometers for early disease detection, as fundamental vibrational modes of (bio-)molecules lie in the investigated spectral range. The results are discussed and compared with previous sensitivity records for electric-field measurements and reference is made to related implementations of the described characterization technique. Including a detailed theoretical description and simulation results, the work elucidates crucial scaling laws, characteristics and limitations. The thesis will thus serve as an educational introduction to the topic of field-resolved measurements using electro-optic sampling, giving detailed instructions on simulations and experimental implementations. At the same time, it showcases the state-of-the-art in terms of detection sensitivity for characterizing mid-infrared waves.


Laser-Matter Interaction for Radiation and Energy

Laser-Matter Interaction for Radiation and Energy

Author: Hitendra K. Malik

Publisher: CRC Press

Published: 2021-03-15

Total Pages: 383

ISBN-13: 1315396009

DOWNLOAD EBOOK

The interaction of high-power lasers with matter can generate Terahertz radiations that efficiently contribute to THz Time-Domain Spectroscopy and also would replace X-rays in medical and security applications. When a short intense laser pulse ionizes a gas, it may produce new frequencies even in VUV to XUV domain. The duration of XUV pulses can be confined down to the isolated attosecond pulse levels, required to study the electronic re-arrangement and ultrafast processes. Another important aspect of laser-matter interaction is the laser thermonuclear fusion control where accelerated particles also find an efficient use. This book provides comprehensive coverage of the most essential topics, including Electromagnetic waves and lasers THz radiation using semiconducting materials / nanostructures / gases / plasmas Surface plasmon resonance THz radiation detection Particle acceleration technologies X-ray lasers High harmonics and attosecond lasers Laser based techniques of thermonuclear fusion Controlled fusion devices including NIF and ITER The book comprises of 11 chapters and every chapter starts with a lucid introduction to the main topic. Then sub-topics are sedulously discussed keeping in mind their basics, methodology, state-of-the-art and future perspective that will prove to be salutary for readers. High quality solved examples are appended to the chapters for their deep understanding and relevant applications. In view of the nature of the topics and their level of discussion, this book is expected to have pre-eminent potential for researchers along with postgraduate and undergraduate students all over the world.


Laser Radar

Laser Radar

Author: National Research Council

Publisher: National Academies Press

Published: 2014-03-14

Total Pages: 321

ISBN-13: 0309302196

DOWNLOAD EBOOK

In today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.


Applied Photonics

Applied Photonics

Author: Chai Yeh

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 353

ISBN-13: 0080499260

DOWNLOAD EBOOK

Photonic circuitry is the first-choice technological advancement recognized by the telecommunications industry. Due to the speed, strength, and clarity of signal, photonic circuits are rapidly replacing electronic circuits in a range of applications. Applied Photonics is a state-of-the-art reference book that describes the fundamental physical concept of photonics and examines the most current information available in the photonics field. Cutting-edge developments in semiconductors, optical switches, and solitons are presented in a readable and easily understandable style, making this volume accessible, if not essential, reading for practicing engineers and scientists. Introduces the concept of nonlinear interaction of photons with matters, photons, and phonons Covers recent developments of semiconductor lasers and detectors in the communications field Discusses the development of nonlinear devices, including optical amplifiers, solitons, and phase conjugators, as well as the development of photonic components, switches, interconnects, and image processing devices