This book describes new approaches to fabricate complementary organic electronics and focuses on the design of circuits and practical systems created using these manufacturing approaches. The authors describe two state-of-the-art, complementary organic technologies, characteristics and modeling of their transistors and their capability to implement circuits and systems on foil. Readers will benefit from the valuable overview of the challenges and opportunities that these extremely innovative technologies provide.
Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others.Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues.The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics.Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. - Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues - Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications - Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics
Polymers in Organic Electronics: Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems provides readers with vital data, guidelines, and techniques for optimally designing organic electronic systems using novel polymers. The book classifies polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules while also providing an introduction to the fundamental principles of polymers and electronics. Features information on concepts and optimized types of electronics and a classification system of electronic polymers, including piezoelectric and pyroelectric, optoelectronic, mechatronic, organic electronic complexes, and more. The book is designed to help readers select the optimized material for structuring their organic electronic system.Chapters discuss the most common properties of electronic polymers, methods of optimization, and polymeric-structured printed circuit boards. The polymeric structures of optoelectronics and photonics are covered and the book concludes with a chapter emphasizing the importance of polymeric structures for packaging of electronic devices. - Provides key identifying details on a range of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers - Covers the most common electrical, electronic, and optical properties of electronic polymers - Describes the underlying theories on the mechanics of polymer conductivity - Discusses polymeric structured printed circuit boards, including their rapid prototyping and optimizing their polymeric structures - Shows optimization methods for both polymeric structures of organic active electronic components and organic passive electronic components
Recent years have witnessed significant research efforts in flexible organic and amorphous-metal-oxide analogue electronics, in view of its formidable potential for applications such as smart sensor systems. This Element provides a comprehensive overview of this growing research area. After discussing the properties of organic and amorphous-metal-oxide technologies relevant to analogue circuits, this Element focuses on their application to two key circuit blocks: amplifiers and analogue-to-digital converters. The Element thus provides a fresh look at the evolution and immediate opportunities of the field, and identifies the remaining challenges for these technologies to become the platform of choice for flexible analogue electronics.
This book provides insight into organic electronics technology and in analog circuit techniques that can be used to increase the performance of both analog and digital organic circuits. It explores the domain of organic electronics technology for analog circuit applications, specifically smart sensor systems. It focuses on all the building blocks in the data path of an organic sensor system between the sensor and the digital processing block. Sensors, amplifiers, analog-to-digital converters and DC-DC converters are discussed in detail. Coverage includes circuit techniques, circuit implementation, design decisions and measurement results of the building blocks described.
This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics. The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.
Covering both TFT technologies, and the theory and practice of circuit design, this book equips engineers with the technical knowledge and hands-on skills needed to make circuits on foil with organic or metal oxide based TFTs for applications such as flexible displays and RFID. It provides readers with a solid theoretical background and gives an overview of current TFT technologies including device architecture, typical parameters, and a theoretical framework for comparing different logical families. Concrete, real-world design cases, such as RFID circuits, and organic and metal oxide TFT-based 8-bit microprocessors, enable readers to grasp the practical potential of these design techniques and how they can be applied. This is an essential guide for students and professionals who need to make better transistors on foil.
Text provides information about advanced OTFT (Organic thin film transistor) structures, their modeling and extraction of performance parameters, materials of individual layers, their molecular structures, basics of pi-conjugated semiconducting materials and their properties, OTFT charge transport phenomena and fabrication techniques. It includes applications of OTFTs such as single and dual gate OTFT based inverter circuits along with bootstrap techniques, SRAM cell designs based on different material and circuit configurations, light emitting diodes (LEDs). Besides this, application of dual gate OTFT in the logic gate, shift register, Flip-Flop, counter circuits will be included as well.
This thesis reports on an outstanding research advance in the development of Application Specific Printed Electronic (ASPE) circuits. It proposes the novel Inkjet-Configurable Gate Array (IGA) concept as a design-manufacturing method for the direct mapping of digital functions on top of new prefabricated structures. The thesis begins by providing details on the generation of the IGA bulk, and subsequently presents Drop-on-Demand configurable methodologies for the metallization of IGAs. Lastly, it demonstrates IGAs’ suitability for personalization and yield improvement, and reports on the integration of various circuits into IGA bulk. In addition to highlighting novel results, the thesis also offers a comprehensive introduction to printed electronics, from technology development, to design methods, tools and kits.
The field of organic electronics spans a very wide range of disciplines from physics and chemistry to hardware and software engineering. This makes the field of organic circuit design a daunting prospect full of intimidating complexities, yet to be exploited to its true potential. Small focussed research groups also find it difficult to move beyond their usual boundaries and create systems-on-foil that are comparable with the established silicon world.This book has been written to address these issues, intended for two main audiences; firstly, physics or materials researchers who have thus far designed circuits using only basic drawing software; and secondly, experienced silicon CMOS VLSI design engineers who are already knowledgeable in the design of full custom transistor level circuits but are not familiar with organic devices or thin film transistor (TFT) devices.In guiding the reader through the disparate and broad subject matters, a concise text has been written covering the physics and chemistry of the materials, the derivation of the transistor models, the software construction of the simulation compact models, and the engineering challenges of a right-first-time design flow, with notes and references to the current state-of-the-art advances and publications. Real world examples of simulation models, circuit designs, fabricated samples and measurements have also been given demonstrating how the theory can be used in applications.