Accidents and natural disasters involving nuclear power plants such as Chernobyl, Three Mile Island, and the recent meltdown at Fukushima are rare, but their effects are devastating enough to warrant increased vigilance in addressing safety concerns. Nuclear Power Plant Instrumentation and Control Systems for Safety and Security evaluates the risks inherent to nuclear power and methods of preventing accidents through computer control systems and other such emerging technologies. Students and scholars as well as operators and designers will find useful insight into the latest security technologies with the potential to make the future of nuclear energy clean, safe, and reliable.
This book provides a training course for I and C maintenance engineers in power, process, chemical, and other industries. It summarizes all the scattered literature in this field. The book compiles 30 years of knowledge gained by the author and his staff in testing the I and C systems of nuclear power plants around the world. It focuses on process temperature and pressure sensors and the verification of these sensors’ calibration and response time.
Covers all aspects of electrical systems for nuclear power plants written by an authority in the field Based on author Omar Mazzoni's notes for a graduate level course he taught in Electrical Engineering, this book discusses all aspects of electrical systems for nuclear power plants, making reference to IEEE nuclear standards and regulatory documents. It covers such important topics as the requirements for equipment qualification, acceptance testing, periodic surveillance, and operational issues. It also provides excellent guidance for students in understanding the basis of nuclear plant electrical systems, the industry standards that are applicable, and the Nuclear Regulatory Commission's rules for designing and operating nuclear plants. Electrical Systems for Nuclear Power Plants offers in-depth chapters covering: elements of a power system; special regulations and requirements; unique requirements of a Class 1E power system; nuclear plants containment electrical penetration assemblies; on-site emergency AC sources; on-site emergency DC sources; protective relaying; interface of the nuclear plant with the grid; station blackout (SBO) issues and regulations; review of electric power calculations; equipment aging and decommissioning; and electrical and control systems inspections. This valuable resource: Evaluates industry standards and their relationship to federal regulations Discusses Class 1E equipment, emergency generation, the single failure criterion, plant life, and plant inspection Includes exercise problems for each chapter Electrical Systems for Nuclear Power Plants is an ideal text for instructors and students in electrical power courses, as well as for engineers active in operating nuclear power plants.
Dynamics and Control of Nuclear Reactors presents the latest knowledge and research in reactor dynamics, control and instrumentation; important factors in ensuring the safe and economic operation of nuclear power plants. This book provides current and future engineers with a single resource containing all relevant information, including detailed treatments on the modeling, simulation, operational features and dynamic characteristics of pressurized light-water reactors, boiling light-water reactors, pressurized heavy-water reactors and molten-salt reactors. It also provides pertinent, but less detailed information on small modular reactors, sodium fast reactors, and gas-cooled reactors. - Provides case studies and examples to demonstrate learning through problem solving, including an analysis of accidents at Three Mile Island, Chernobyl and Fukushima Daiichi - Includes MATLAB codes to enable the reader to apply the knowledge gained to their own projects and research - Features examples and problems that illustrate the principles of dynamic analysis as well as the mathematical tools necessary to understand and apply the analysis Publishers Note: Table 3.1 has been revised and will be included in future printings of the book with the following data: Group Decay Constant, li (sec-1) Delayed Neutron Fraction (bi) 1 0.0124 0.000221 2 0.0305 0.001467 3 0.111 0.001313 4 0.301 0.002647 5 1.14 0.000771 6 3.01 0.000281 Total delayed neutron fraction: 0.0067
Instrumentation and Control Systems for Nuclear Power Plants provides the latest innovative research onthe design of effective modern I&C systems for both existing and newly commissioned plants, along withinformation on system implementation. Dr. Cappelli and his team of expert contributors cover fundamentals,explore the most advanced research in control systems technology, and tackle topics such as the human–machine interface, control room redesign, and control modeling. The inclusion of codes and standards,inspection procedures, and regulatory issues ensure that the reader can confidently design their own I&Csystems and integrate them into existing nuclear sites and projects. - Covers various viewpoints, including theory, modeling, design and applications of I&C systems - Includes codes and standards, inspection procedures and regulatory issues - Combines engineering and physics aspects in one thorough resource, presenting human factors, modeling and HMI together for the first time - Instrumentation and Control Systems for Nuclear Power Plants highlights the key role nuclear energy plays in the transition to a lower-carbon energy mix
This publication defines a framework that represents the state of the art in assessment methodologies for safety and instrumentation and control software used at nuclear power plants. It describes an approach for developing and communicating assessments based on claims, argument and evidence. The assessment of software dependability, which encompasses properties such as safety, reliability, availability, maintainability and security, is an essential and challenging aspect of the safety justification. Guiding principles for a dependability assessment are established to provide the basis for defining an assessment strategy and implementing the assessment process. Sources of evidence for the assessment are provided and lessons learned from past digital instrumentation and control system implementation in areas such as software development, operational usage, regulatory review and platform certification are also described.
Computer security as a discipline is challenged by increasing threat vectors targeting a dynamic technological environment. This publication establishes guidance addressing the challenge of applying computer security measures to instrumentation and control (I&C) systems at nuclear facilities. The measures are intended to protect these I&C systems throughout their entire lifecycles against malicious acts perpetrated by threat actors. The technical basis and methodologies for the application of these computer security measures are considered. The publication also addresses the application of such measures to the development, simulation and maintenance environments of the I&C systems. In addition, account is taken of developments in the human factors engineering and nuclear safety. This Technical Guidance references and takes into account other Safety Guides and IAQEA Nuclear Security Series publications that provide guidance relating to I&C design.
The nuclear industry and the U.S. Nuclear Regulatory Commission (USNRC) have been working for several years on the development of an adequate process to guide the replacement of aging analog monitoring and control instrumentation in nuclear power plants with modern digital instrumentation without introducing off-setting safety problems. This book identifies criteria for the USNRC's review and acceptance of digital applications in nuclear power plants. It focuses on eight areas: software quality assurance, common-mode software failure potential, systems aspects of digital instrumentation and control technology, human factors and human-machine interfaces, safety and reliability assessment methods, dedication of commercial off-the-shelf hardware and software, the case-by-case licensing process, and the adequacy of technical infrastructure.