Printed Batteries

Printed Batteries

Author: Senentxu Lanceros-Méndez

Publisher: John Wiley & Sons

Published: 2018-04-23

Total Pages: 270

ISBN-13: 1119287421

DOWNLOAD EBOOK

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Diffusion in Solids

Diffusion in Solids

Author: Helmut Mehrer

Publisher: Springer Science & Business Media

Published: 2007-07-24

Total Pages: 645

ISBN-13: 354071488X

DOWNLOAD EBOOK

This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.


Polymer-based Solid State Batteries

Polymer-based Solid State Batteries

Author: Daniel Brandell

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-07-19

Total Pages: 236

ISBN-13: 1501514903

DOWNLOAD EBOOK

Recent years has seen a tremendous growth in interest for solid state batteries based on polymer electrolytes, with advantages of higher safety, energy density, and ease of processing. The book explains which polymer properties guide the performance of the solid-state device, and how these properties are best determined. It is an excellent guide for students, newcomers and experts in the area of solid polymer electrolytes.


Sodium-Ion Batteries

Sodium-Ion Batteries

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2020-07-05

Total Pages: 280

ISBN-13: 1644900831

DOWNLOAD EBOOK

Sodium-ion batteries are likely to be the next-generation power sources. They offer higher safety than lithium-ion batteries and, most important, sodium is available in unlimited abundance. The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology. Keywords: Sodium-Ion Batteries, Lithium-Ion Batteries, Carbon Nanofibers, Conducting Polymers, Electrode Materials, Electrolytes, Graphene, Carbon Anodes, Magnetic Nanomaterials, Mn-based Materials, Sn-based Materials, Na-O2 Batteries, NASICON Electrodes, Organic Electrodes, Polyacetylene, Polyaniline, Polyphenylene, Redox Mediators, Reversible Capacity, Singlet Oxygen, Superoxide Stability.


Functional Materials For Next-generation Rechargeable Batteries

Functional Materials For Next-generation Rechargeable Batteries

Author: Jiangfeng Ni

Publisher: World Scientific

Published: 2021-02-10

Total Pages: 229

ISBN-13: 9811230684

DOWNLOAD EBOOK

Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.


Na-ion Batteries

Na-ion Batteries

Author:

Publisher: John Wiley & Sons

Published: 2021-05-11

Total Pages: 386

ISBN-13: 1789450136

DOWNLOAD EBOOK

This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.


Functional Polymers for Metal-ion Batteries

Functional Polymers for Metal-ion Batteries

Author: Shanqing Zhang

Publisher: John Wiley & Sons

Published: 2023-01-12

Total Pages: 229

ISBN-13: 3527838600

DOWNLOAD EBOOK

Functional Polymers for Metal-Ion Batteries Unique and useful book covering fundamental knowledge and practical applications of polymer materials in energy storage systems In Functional Polymers for Metal-Ion Batteries, the recent development and achievements of polymer-based materials are comprehensively analyzed in four directions, including electrode materials, binders, separators, and solid electrolytes, highlighting the working mechanisms, classification, design strategies, and practical applications of these polymer materials in mental-ion batteries. Specific sample topics covered in Functional Polymers for Metal-Ion Batteries include: Prominent advantages of various solid-state electrolytes, such as low flammability, easy processability, more tolerance to vibration, shock, and mechanical deformation Why and how functional polymers present opportunities to maximize energy density and pursue the sustainability of the battery industry How the application of functional polymers in metal-ion batteries helps enhance the high energy density of energy storage devices and reduce carbon footprint during production How development of functional separators could significantly lower the cost of battery manufacturing Providing a comprehensive understanding of the role of polymers in the whole configuration of metal-ion batteries from electrodes to electrolytes, Functional Polymers for Metal-Ion Batteries is an ideal resource for materials scientists, electrochemists, and polymer, solid state, and physical chemists who wish to understand the latest developments of this technology.


Encyclopedia of Electrochemical Power Sources

Encyclopedia of Electrochemical Power Sources

Author:

Publisher: Elsevier

Published: 2024-09-16

Total Pages: 5674

ISBN-13: 0323958222

DOWNLOAD EBOOK

The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike


Green Engineering and Technology

Green Engineering and Technology

Author: Om Prakash Jena

Publisher: CRC Press

Published: 2021-06-16

Total Pages: 404

ISBN-13: 1000396118

DOWNLOAD EBOOK

Escalating urbanization and energy consumption have increased the demand for green engineering solutions and intelligent systems to mitigate environmental hazards and offer a more sustainable future. Green engineering technologies help to create sustainable, eco-friendly designs and solutions with the aid of updated tools, methods, designs, and innovations. These technologies play a significant role in optimizing sustainability in various areas of energy, agriculture, waste management, and bioremediation and include green computing and artificial intelligence (AI) applications. Green Engineering and Technology: Innovations, Design, and Architectural Implementation examines the most recent advancements in green technology, across multiple industries, and outlines the opportunities of emerging and future innovations, as well as practical real-world implementation. Features: Provides different models capable of fulfilling the criteria of energy efficiency, health and safety, renewable resources, and more Examines recycling, waste management, and bioremediation techniques as well as waste-to-energy technologies Presents business cases for adopting green technologies including electronics, manufacturing, and infrastructure projects Reviews green technologies for applications such as energy production, building construction, transportation, and industrialization Green Engineering and Technology: Innovations, Design, and Architectural Implementation serves as a useful and practical guide for practicing engineers, researchers, and students alike.