Design of a Miniature Explosive Isentropic Compression Experiment

Design of a Miniature Explosive Isentropic Compression Experiment

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The purpose of this design study is to adapt the High Explosive Pulsed Power Isentropic Compression Experiment (HEPP-ICE) to milligram quantities of materials at stresses of ≈100 GPa. For this miniature application we assume that a parallel plate stripline of ≈2.5 mm width is needed to compress the samples. In any parallel plate load, the rising currents flow preferentially along the outside edges of the load where the specific impedance is a minimum [1]. Therefore, the peak current must be between 1 and 2 MA to reach a stress of 100 GPa in the center of a 2.5 mm wide parallel plate load; these are small relative to typical HEPP-ICE currents. We show that a capacitor bank alone exceeds the requirements of this miniature ICE experiment and a flux compression generator (FCG) is not necessary. The proposed circuit will comprise one half of the 2.4-MJ bank, i.e., the 6-mF, 20-kV, 1.2 MJ capacitor bank used in the original HEPP-ICE circuit. Explosive opening and closing switches will still be required because the rise time of the capacitor circuit would be of the order of 30 [mu]s without them. For isentropic loading in these small samples, stress rise times of ≈200 ns are required.


Design and Analysis of Isentropic Compression Experiments

Design and Analysis of Isentropic Compression Experiments

Author:

Publisher:

Published: 1979

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The use of magnetic flux compression to isentropically compress matter is summarized. Details of the process used to extract boundary data from the flash radiographs and the design criteria for the containment of very compressible material are discussed. Finally, suggestions for improvement of the next generation of experiments are made.


Isentropic Compression of High Explosives with the Z Accelerator

Isentropic Compression of High Explosives with the Z Accelerator

Author:

Publisher:

Published: 2002

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

Isentropic compression experiments (ICE) were performed on a variety of high explosives. The samples were dynamically loaded by Sandia's Z-accelerator with a ramp compression wave of 300 ns rise time and peak stress of 100-350 kbar. Sample/window interface velocities were recorded with VISAR. Experiments were performed on LX04 to obtain the stress-strain relation using a backward integration technique. Experiments were similarly performed on LX17 and the results compared to hydrodynamics calculations that used a reactive flow equation of state. Recent experiments were also conducted on single crystal HMX with the aim of detecting the phase transition believed to occur at 270 kbar.


Fundamentals of Rocket Propulsion

Fundamentals of Rocket Propulsion

Author: DP Mishra

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 364

ISBN-13: 1351708414

DOWNLOAD EBOOK

The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.


Explosive Effects and Applications

Explosive Effects and Applications

Author: Jonas A. Zukas

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 440

ISBN-13: 1461205891

DOWNLOAD EBOOK

This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.


Chemical Engineering Design

Chemical Engineering Design

Author: Gavin Towler

Publisher: Elsevier

Published: 2012-01-25

Total Pages: 1321

ISBN-13: 0080966608

DOWNLOAD EBOOK

Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. New discussion of conceptual plant design, flowsheet development and revamp design Significantly increased coverage of capital cost estimation, process costing and economics New chapters on equipment selection, reactor design and solids handling processes New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography Increased coverage of batch processing, food, pharmaceutical and biological processes All equipment chapters in Part II revised and updated with current information Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards Additional worked examples and homework problems The most complete and up to date coverage of equipment selection 108 realistic commercial design projects from diverse industries A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors