Weinsäure- und Äpfelsäurederivate sind sehr nützliche Bausteine für die asymmetrische Synthese von großen organischen Molekülen. Diese sog. enantioselektiven Synthesen sind von größter Bedeutung in der Naturstoff-Forschung sowie in der Feinchemie und pharmazeutischen Industrie. Dieses Buch liefert einen genauen und umfassenden Überblick über die chemischen Eigenschaften und synthetischen Anwendungen aller Derivate der Wein- und Äpfelsäure. Ideal für alle, die auf diesem Gebiet arbeiten. Auch für Studenten! Es enthält Hunderte chemischer Reaktionen, 50 große Tabellen und 2.000 Verweise: Eine erschöpfende Behandlung von Struktur, Eigenschaften und synthetischen Anwendungen von 20 Derivatklassen der Wein- und Äpfelsäure. (02/99)
Covering every essential element in the development of chiral products, this reference provides a solid overview of the formulation, biopharmaceutical characteristics, and regulatory issues impacting the production of these pharmaceuticals. It supports researchers as they evaluate the pharmacodynamic, pharmacokinetic, and toxicological characteristics of specific enantiomers and chiral drug compounds and addresses in one convenient reference all the major challenges pertaining to drug chirality that have been neglected in the literature. Chirality in Drug Design and Development collects the latest studies from an interdisciplinary team of experts on chiral drug design.
Die wichtigsten und nützlichsten Methoden der modernen stereoselektiven Synthese sind in diesem Band zusammengefasst. Viele anschauliche Beispiele für die Darstellung von Wirkstoffen und Naturstoffen regen zur gezielten Abwandlung und Integration in eigene Synthesewege an. Dabei geht es den Autoren weniger darum, das Gebiet in seiner Gesamtheit darzustellen; vielmehr versuchen sie, die wirklich grundlegenden Ansätze auszuwählen, die jeder organische Synthesechemiker kennen und anwenden sollte.
This Reprint Book highlights and overviews the most important and novel aspects of chiral auxiliary and chirogenesis in different natural/physical sciences and in modern technologies. In particular, some newly emerging classes of molecules used for these purposes are described. This book consists of four review articles and one research paper and is of interest for general chemistry readership, including graduate and postgraduate students, and for researchers specializing in the fields of chirality and stereochemistry.
This book reviews chiral polymer synthesis and its application to asymmetric catalysis. It features the design and use of polymer-immobilized catalysts and methods for their design and synthesis. Chapters cover peptide-catalyzed and enantioselective synthesis, optically-active polymers, and continuous flow processes. It collects recent advances in an important field of polymer and organic chemistry, with leading researchers explaining applications in academic and industry R & D.
This book aims to overview the role of non-covalent interactions, such as hydrogen and halogen bonding, π-π, π-anion and electrostatic interactions, hydrophobic effects and van der Waals forces in the synthesis of organic and inorganic compounds, as well as in design of new crystals and function materials. The proposed book should allow to combine, in a systematic way, recent advances on the application of non-covalent interactions in synthesis and design of new compounds and functional materials with significance in Inorganic, Organic, Coordination, Organometallic, Pharmaceutical, Biological and Material Chemistries. Therefore, it should present a multi- and interdisciplinary character assuring a rather broad scope. We believe it will be of interest to a wide range of academic and research staff concerning the synthesis of new compounds, catalysis and materials. Each chapter will be written by authors who are well known experts in their respective fields.
The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis (more than 1300 references), the aim of this book is to present a detailed analysis of the factors that govern stereoselectivity in organic reactions. It is important to note that the references were each individually checked by the authors to verify relevance to the topics under discussion. The study of stereoselectivity has evolved from issues of diastereoselectivity, through auxiliary-based methods for the synthesis of enantiomerically pure compounds (diastereoselectivity followed by separation and auxiliary cleavage), to asymmetric catalysis. In the latter instance, enantiomers (not diastereomers) are the products, and highly selective reactions and modern purification techniques allow preparation - in a single step - of chiral substances in 99% ee for many reaction types. After an explanation of the basic physical-organic principles of stereoselectivity, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Analytical Methods" provides a critical overview of the most common methods for analysis of stereoisomers. The authors then follow the 'tried-and-true' format of grouping the material by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions (enolate alkylations, organometal additions to carbonyls, aldol and Michael reactions, and cycloadditions and rearrangements), one chapter on reductions and hydroborations (carbon-hydrogen bond forming reactions), and one on oxidations (carbon-oxygen and carbon-nitrogen bond forming reactions). Leading references are provided to natural product synthesis that have been accomplished using a given reaction as a key step. In addition to tables of examples that show high selectivity, a transition state analysis is presented to explain - to the current level of understanding - the stereoselectivity of each reaction. In one case (Cram's rule) the evolution of the current theory is detailed from its first tentative (1952) postulate to the current Felkin-Anh-Heathcock formalism. For other reactions, only the currently accepted rationale is presented. Examination of these rationales also exposes the weaknesses of current theories, in that they cannot always explain the experimental observations. These shortcomings provide a challenge for future mechanistic investigations.
Chiral Building Blocks in Asymmetric Synthesis A comprehensive introduction to the important classes of chiral building blocks Chirality — the asymmetric quality found in certain chemical compounds — plays an essential role in our world: chiral compounds can be found in biology, pharmaceutical compounds, agrochemicals, and fragrances. The stereoselective preparation of these complex molecular constructions constitutes a challenge. To this end, modern asymmetric synthesis utilizes a variety of valuable and efficient reagents employed as chiral auxiliaries, metal complexes and organocatalysts in stereoselective catalysis, and enantiopure reactants termed as chiral building blocks. In Chiral Building Blocks in Asymmetric Synthesis, the achievements in the fields of preparation of and applications of chiral blocks are presented. In doing so, the book comprehensively discusses the important classes of these reactants as the key for the asymmetric synthesis of chiral molecules. As such, it is an indispensable resource about synthetic methods, as well as possible modifications and transformations of important classes of chiral compounds. It also highlights the importance of their use as reactants and auxiliaries in the preparation of more sophisticated molecules or supramolecular systems. In Chiral Building Blocks in Asymmetric Synthesis readers will also find: Organization according to the most important compound classes — e.g. amino acids, BINOL and its derivatives, terpenes, and others — with an emphasis on synthesis and application A focus on the use of chiral building blocks for the preparation of bioactive compounds and supramolecular assemblies Chiral Building Blocks in Asymmetric Synthesis is a useful reference for organic chemists, catalytic chemists, chemists in industry, medicinal chemists, pharmaceutical chemists, and the libraries that support them.