Design Principles and Analysis Techniques for HRQoL Clinical TrialsSAS, R, and SPSS examples realistically show how to implement methods Focusing on longitudinal studies, Design and Analysis of Quality of Life Studies in Clinical Trials, Second Edition addresses design and analysis aspects in enough detail so that readers can apply statistical meth
More and more frequently, clinical trials include the evaluation of Health-Related Quality of Life (HRQoL), yet many investigators remain unaware of the unique measurement and analysis issues associated with the assessment of HRQoL. At the end of a study, clinicians and statisticians often face challenging and sometimes insurmountable analytic problems. Design and Analysis of Quality of Life Studies in Clinical Trials details these issues and presents a range of solutions. Written from the author's extensive experience in the field, it focuses on the very specific features of QoL data: its longitudinal nature, multidimensionality, and the problem of missing data. The author uses three real clinical trials throughout her discussions to illustrate practical implementation of the strategies and analytic methods presented. As Quality of Life becomes an increasingly important aspect of clinical trials, it becomes essential for clinicians, statisticians, and designers of these studies to understand and meet the challenges this kind of data present. In this book, SAS and S-PLUS programs, checklists, numerous figures, and a clear, concise presentation combine to provide readers with the tools and skills they need to successfully design, conduct, analyze, and report their own studies.
An essential, up-to-date guide to the design of studies and selection of the correct QoL instruments for observational studies and clinical trials. Quality of Life (QoL) outcomes or Person/Patient Reported Outcome Measures (PROMs) are now frequently being used in randomised controlled trials (RCTs) and observational studies. This book provides a practical guide to the design, analysis and interpretation of studies that use such outcomes. QoL outcomes tend to generate data with discrete, bounded and skewed distributions. Many investigators are concerned about the appropriateness of using standard statistical methods to analyse QoL data and want guidance on what methods to use. QoL outcomes are frequently used in cross-sectional surveys and non-randomised health-care evaluations. Provides a user-friendly guide to the design and analysis of clinical trials and observational studies in relation to QoL outcomes. Discusses the problems caused by QoL outcomes and presents intervention options to help tackle them. Guides the reader step-by-step through the selection of appropriate QoLs. Features exercises and solutions and a supporting website providing downloadable data files. Illustrated throughout with examples and case studies drawn from the author’s experience, this book offers statisticians and clinicians guidance on choosing between the numerous available QoL instruments.
The volume presents a broad spectrum of papers which illustrates a range of current research related to the theory, methods and applications of health related quality of life (HRQoL) as well as the interdisciplinary nature of this work.
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Clinical trials have two purposes -- to treat the patients in the trial, and to obtain information which increases our understanding of the disease and especially how patients respond to treatment. Statistical design provides a means to achieve both these aims, while statistical data analysis provides methods for extracting useful information from the trial data. Recent advances in statistical computing have enabled statisticians to implement very rapidly a broad array of methods which previously were either impractical or impossible. Biostatisticians are now able to provide much greater support to medical researchers working in both clinical and laboratory settings. As our collective toolkit of techniques for analyzing data has grown, it has become increasingly difficult for biostatisticians to keep up with all the developments in our own field. Recent Advances in Clinical Trial Design and Analysis brings together biostatisticians doing cutting-edge research and explains some of the more recent developments in biostatistics to clinicians and scientists who work in clinical trials.
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Quality of life studies form an essential part of the evaluation of any treatment. Written by two authors who are well respected within this field, Quality of Life: The Assessment, Analysis and Interpretation of Patient-reported Outcomes, Second Edition lays down guidelines on assessing, analysing and interpreting quality of life data. The new edition of this standard book has been completely revised, updated and expanded to reflect many methodological developments emerged since the publication of the first edition. Covers the design of instruments, the practical aspects of implementing assessment, the analyses of the data, and the interpretation of the results Presents all essential information on Quality of Life Research in one comprehensive volume Explains the use of qualitative and quantitative methods, including the application of basic statistical methods Includes copious practical examples Fills a need in a rapidly growing area of interest New edition accommodates significant methodological developments, and includes chapters on computer adaptive testing and item banking, choosing an instrument, systematic reviews and meta analysis This book is of interest for everyone involved in quality of life research, and it is applicable to medical and non-medical, statistical and non-statistical readers. It is of particular relevance for clinical and biomedical researchers within both the pharmaceutical industry and practitioners in the fields of cancer and other chronic diseases. Reviews of the First Edition – Winner of the first prize in the Basis of Medicine Category of the BMA Medical Book Competition 2001: “This book is highly recommended to clinicians who are actively involved in the planning, analysis and publication of QoL research.” CLINICAL ONCOLOGY “This book is highly recommended reading.” QUALITY OF LIFE RESEARCH
Researchers in all clinical fields are fully aware of the importance of Quality of Life measurements in judging the efficacy of a given treatment. Psychological criteria play an important role in this evaluation. Assessment of Quality of Life in Clinical Trials: methods and practice explores the current state of the art and illustrates the benefits and potential of health related quality of life assessment in clinical trials. It covers a wide range of analytical issues, emphasizing new and innovative approaches that are of practical and clinical importance.
Clinical Trials, Second Edition, offers those engaged in clinical trial design a valuable and practical guide. This book takes an integrated approach to incorporate biomedical science, laboratory data of human study, endpoint specification, legal and regulatory aspects and much more with the fundamentals of clinical trial design. It provides an overview of the design options along with the specific details of trial design and offers guidance on how to make appropriate choices. Full of numerous examples and now containing actual decisions from FDA reviewers to better inform trial design, the 2nd edition of Clinical Trials is a must-have resource for early and mid-career researchers and clinicians who design and conduct clinical trials. - Contains new and fully revised material on key topics such as biostatistics, biomarkers, orphan drugs, biosimilars, drug regulations in Europe, drug safety, regulatory approval and more - Extensively covers the "study schema" and related features of study design - Incorporates laboratory data from studies on human patients to provide a concrete tool for understanding the concepts in the design and conduct of clinical trials - Includes decisions made by FDA reviewers when granting approval of a drug as real world learning examples for readers