Density Functional Methods In Physics
Author: Reiner M. Dreizler
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 530
ISBN-13: 1475708181
DOWNLOAD EBOOKRead and Download eBook Full
Author: Reiner M. Dreizler
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 530
ISBN-13: 1475708181
DOWNLOAD EBOOKAuthor: Eberhard Engel
Publisher: Springer Science & Business Media
Published: 2011-02-14
Total Pages: 543
ISBN-13: 3642140904
DOWNLOAD EBOOKDensity Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.
Author: Reiner M. Dreizler
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 312
ISBN-13: 3642861059
DOWNLOAD EBOOKDensity Functional Theory is a rapidly developing branch of many-particle physics that has found applications in atomic, molecular, solid-state and nuclear physics. This book describes the conceptual framework of density functional theory and discusses in detail the derivation of explicit functionals from first principles as well as their application to Coulomb systems. Both non-relativistic and relativistic systems are treated. The connection of density functional theory with other many-body methods is highlighted. The presentation is self-contained; the book is, thus, well suited for a graduate course on density functional theory.
Author: David S. Sholl
Publisher: John Wiley & Sons
Published: 2011-09-20
Total Pages: 252
ISBN-13: 1118211049
DOWNLOAD EBOOKDemonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.
Author:
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 205
ISBN-13: 3322976203
DOWNLOAD EBOOKDensity functional methods form the basis of a diversified and very active area of present days computational atomic, molecular, solid state and even nuclear physics. A large number of computational physicists use these meth ods merely as a recipe, not reflecting too much upon their logical basis. One also observes, despite of their tremendeous success, a certain reservation in their acceptance on the part of the more theoretically oriented researchers in the above mentioned fields. On the other hand, in the seventies (Thomas Fermi theory) and in the eighties (Hohenberg-Kohn theory), density func tional concepts became subjects of mathematical physics. In 1994 a number of activities took place to celebrate the thirtieth an niversary of Hohenberg-Kohn-Sham theory. I took this an occassion to give lectures on density functional theory to senior students and postgraduates in the winter term of 1994, particularly focusing on the logical basis of the the ory. Preparing these lectures, the impression grew that, although there is a wealth of monographs and reviews in the literature devoted to density func tional theory, the focus is nearly always placed upon extending the practical applications of the theory and on the development of improved approxima tions. The logical foundadion of the theory is found somewhat scattered in the existing literature, and is not always satisfactorily presented. This situation led to the idea to prepare a printed version of the lecture notes, which resulted in the present text.
Author: Miguel A.L. Marques
Publisher: Springer Science & Business Media
Published: 2012-01-21
Total Pages: 573
ISBN-13: 3642235182
DOWNLOAD EBOOKThere have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms—such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. From the reviews of LNP 706: “This is a well structured text, with a common set of notations and a single comprehensive and up-to-date list of references, rather than just a compilation of research articles. Because of its clear organization, the book can be used by novices (basic knowledge of ground-state DFT is assumed) and experienced users of TD-DFT, as well as developers in the field.” (Anna I. Krylov, Journal of the American Chemical Society, Vol. 129 (21), 2007) “This book is a treasure of knowledge and I highly recommend it. Although it is a compilation of chapters written by many different leading researchers involved in development and application of TDDFT, the contributors have taken great care to make sure the book is pedagogically sound and the chapters complement each other [...]. It is highly accessible to any graduate student of chemistry or physics with a solid grounding in many-particle quantum mechanics, wishing to understand both the fundamental theory as well as the exponentially growing number of applications. [...] In any case, no matter what your background is, it is a must-read and an excellent reference to have on your shelf.” Amazon.com, October 15, 2008, David Tempel (Cambridge, MA)
Author: Nicolas Schunck
Publisher: Iph001
Published: 2019-01-28
Total Pages: 0
ISBN-13: 9780750314237
DOWNLOAD EBOOKEnergy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functionals, single- and multi-reference methods, and techniques to describe small- and large-amplitude collective motion or nuclei at high excitation energy. Edited by an expert in energy density functional theory, Dr Nicolas Schunck, alongside several experts within the field, this book provides a comprehensive and informative exploration of EDF methods. Detailed derivations, practical approaches, examples and figures are used throughout the book to give a coherent narrative of topics that have hitherto rarely been covered together.
Author: Carsten Ullrich
Publisher: Oxford University Press
Published: 2012
Total Pages: 541
ISBN-13: 0199563020
DOWNLOAD EBOOKTime-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Author: Tomasz A. Wesolowski
Publisher: World Scientific
Published: 2013
Total Pages: 464
ISBN-13: 9814436739
DOWNLOAD EBOOKThis is a comprehensive overview of state-of-the-art computational methods based on orbital-free formulation of density functional theory completed by the most recent developments concerning the exact properties, approximations, and interpretations of the relevant quantities in density functional theory.The book is a compilation of contributions stemming from a series of workshops which had been taking place since 2002. It not only chronicles many of the latest developments but also summarises some of the more significant ones. The chapters are mainly reviews of sub-domains but also include original research.
Author: Viraht Sahni
Publisher: Springer Science & Business Media
Published: 2004-01-13
Total Pages: 284
ISBN-13: 9783540408840
DOWNLOAD EBOOKQuantal density functional theory (Q-DFT) is a new local effective potential energy theory of the electronic structure of matter. It is a description in terms of classical fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of the many-body electron correlations present in such a description, namely, those due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, and correlation-current-density effects. The book further describes Schrödinger theory from the new perspective of fields and quantal sources. It also explains the physics underlying the functionals and functional derivatives of traditional DFT.