Grassmannians, Moduli Spaces and Vector Bundles

Grassmannians, Moduli Spaces and Vector Bundles

Author: David Ellwood

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 190

ISBN-13: 0821852051

DOWNLOAD EBOOK

This collection of cutting-edge articles on vector bundles and related topics originated from a CMI workshop, held in October 2006, that brought together a community indebted to the pioneering work of P. E. Newstead, visiting the United States for the first time since the 1960s. Moduli spaces of vector bundles were then in their infancy, but are now, as demonstrated by this volume, a powerful tool in symplectic geometry, number theory, mathematical physics, and algebraic geometry. In fact, the impetus for this volume was to offer a sample of the vital convergence of techniques and fundamental progress, taking place in moduli spaces at the outset of the twenty-first century. This volume contains contributions by J. E. Andersen and N. L. Gammelgaard (Hitchin's projectively flat connection and Toeplitz operators), M. Aprodu and G. Farkas (moduli spaces), D. Arcara and A. Bertram (stability in higher dimension), L. Jeffrey (intersection cohomology), J. Kamnitzer (Langlands program), M. Lieblich (arithmetic aspects), P. E. Newstead (coherent systems), G. Pareschi and M. Popa (linear series on Abelian varieties), and M. Teixidor i Bigas (bundles over reducible curves). These articles do require a working knowledge of algebraic geometry, symplectic geometry and functional analysis, but should appeal to practitioners in a diversity of fields. No specialization should be necessary to appreciate the contributions, or possibly to be stimulated to work in the various directions opened by these path-blazing ideas; to mention a few, the Langlands program, stability criteria for vector bundles over surfaces and threefolds, linear series over abelian varieties and Brauer groups in relation to arithmetic properties of moduli spaces.


Geometry and Physics: Volume I

Geometry and Physics: Volume I

Author: Jørgen Ellegaard Andersen

Publisher: Oxford University Press

Published: 2018-10-18

Total Pages: 400

ISBN-13: 0192522361

DOWNLOAD EBOOK

Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.


Quantum Field Theory I: Basics in Mathematics and Physics

Quantum Field Theory I: Basics in Mathematics and Physics

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

Published: 2007-04-18

Total Pages: 1060

ISBN-13: 354034764X

DOWNLOAD EBOOK

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.


The Influence of Solomon Lefschetz in Geometry and Topology

The Influence of Solomon Lefschetz in Geometry and Topology

Author: Ernesto Lupercio

Publisher: American Mathematical Soc.

Published: 2014-08-05

Total Pages: 240

ISBN-13: 0821894943

DOWNLOAD EBOOK

The influence of Solomon Lefschetz (1884-1972) in geometry and topology 40 years after his death has been very profound. Lefschetz's influence in Mexican mathematics has been even greater. In this volume, celebrating 50 years of mathematics at Cinvestav-México, many of the fields of geometry and topology are represented by some of the leaders of their respective fields. This volume opens with Michael Atiyah reminiscing about his encounters with Lefschetz and México. Topics covered in this volume include symplectic flexibility, Chern-Simons theory and the theory of classical theta functions, toric topology, the Beilinson conjecture for finite-dimensional associative algebras, partial monoids and Dold-Thom functors, the weak b-principle, orbit configuration spaces, equivariant extensions of differential forms for noncompact Lie groups, dynamical systems and categories, and the Nahm pole boundary condition.


Theta Functions and Knots

Theta Functions and Knots

Author: R?zvan Gelca

Publisher: World Scientific

Published: 2014

Total Pages: 469

ISBN-13: 9814520586

DOWNLOAD EBOOK

This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil''s representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those interested in ChernOCoSimons theory find here an introduction using the simplest case, that of abelian ChernOCoSimons theory. Moreover, the construction of abelian ChernOCoSimons theory is based entirely on quantum mechanics, and not on quantum field theory as it is usually done. Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is a self-contained, unified presentation. It is suitable for an advanced graduate course, as well as for self-study. Contents: Some Historical Facts; A Quantum Mechanical Prototype; Surfaces and Curves; The Theta Functions Associated to a Riemann Surface; From Theta Functions to Knots; Some Results About 3- and 4-Dimensional Manifolds; The Discrete Fourier Transform and Topological Quantum Field Theory; Theta Functions and Quantum Groups; An Epilogue OCo Abelian ChernOCoSimons Theory. Readership: Graduate students and young researchers with an interest in complex analysis, mathematical physics, algebra geometry and low dimensional topology.


The Many Facets of Geometry

The Many Facets of Geometry

Author: Nigel J. Hitchin

Publisher: Oxford University Press

Published: 2010-07

Total Pages: 453

ISBN-13: 0199534926

DOWNLOAD EBOOK

This title celebrates the academic career of Professor Nigel Hitchin - one of the most influential figures in the field of differential and algebraic geometry.


Mathematical Aspects of Quantization

Mathematical Aspects of Quantization

Author: Sam Evens

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 321

ISBN-13: 0821875736

DOWNLOAD EBOOK

This book is a collection of expository articles from the Center of Mathematics at Notre Dame's 2011 program on quantization. Included are lecture notes from a summer school on quantization on topics such as the Cherednik algebra, geometric quantization, detailed proofs of Willwacher's results on the Kontsevich graph complex, and group-valued moment maps. This book also includes expository articles on quantization and automorphic forms, renormalization, Berezin-Toeplitz quantization in the complex setting, and the commutation of quantization with reduction, as well as an original article on derived Poisson brackets. The primary goal of this volume is to make topics in quantization more accessible to graduate students and researchers.


Quantum Topology And Global Anomalies

Quantum Topology And Global Anomalies

Author: Randy A Baadhio

Publisher: World Scientific

Published: 1996-09-03

Total Pages: 286

ISBN-13: 9814498777

DOWNLOAD EBOOK

Anomalies are ubiquitous features in quantum field theories. They can ruin the consistency of such theories and put significant restrictions on their viability, especially in dimensions higher than four. Global gauge and gravitational anomalies are to date, one of the scant powerful and probing tools available to physicists in the pursuit of uniqueness.This monograph is one of the very few that specializes in the study of global anomalies in quantum field theories. A discussion of various issues associated to three dimensional physics — the Chern-Simons-Witten theories — widen the scope of this book. Topics discussed here comprises: the ongoing quest for three-manifolds invariant, the role of the mapping class groups in (a) the detection and cancellation of global anomalies, (b) formulating three-manifolds invariant; the geometric quantization of Chern-Simons-Witten theories; deformation quantization; study of chiral and gravitational anomalies; anomalies and the Atiyah-Patodi-Singer Index theorem; exotic spheres; global gravitational anomalies in some six and ten dimensional supergravity and superstring theories, with an additional case study of Witten SU(2) Global Gauge Anomalies.In addition, five chapters lay out the mathematical basis for a thorough use of the topics above. One chapter focuses on the relationship between Teichmüller spaces, moduli spaces and mapping class groups. Another chapter is devoted to mapping class groups and arithmetic groups. Gauge theories on Riemann surfaces are studies in well over two chapters, the first one centered on the theory of bundles and the second on connections.Many readers will find this a useful book, especially theoretical physicists and mathematicians. The material presented here will be of interest to both the experts who will find complete, detailed and precise descriptions of important topics of current interest in mathematical physics, and to students and newcomers to the field, who will appreciate the vast amount of information provided here, especially on global anomalies.


The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles

The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles

Author: Richard Wentworth

Publisher: World Scientific

Published: 2018-06-28

Total Pages: 412

ISBN-13: 9813229101

DOWNLOAD EBOOK

In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.


Deformation Quantization

Deformation Quantization

Author: Gilles Halbout

Publisher: Walter de Gruyter

Published: 2012-10-25

Total Pages: 244

ISBN-13: 3110866226

DOWNLOAD EBOOK

This book contains eleven refereed research papers on deformation quantization by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg in May 2001. Topics covered are: star-products over Poisson manifolds, quantization of Hopf algebras, index theorems, globalization and cohomological problems. Both the mathematical and the physical approach ranging from asymptotic quantum electrodynamics to operads and prop theory will be presented. Historical remarks and surveys set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research that has seen enourmous acticity in the last years, with new ties to many other areas of mathematics and physics.