Physics-Based Deformable Models presents a systematic physics-based framework for modeling rigid, articulated, and deformable objects, their interactions with the physical world, and the estimate of their shape and motion from visual data. This book presents a large variety of methods and associated experiments in computer vision, graphics and medical imaging that help the reader better to understand the presented material. In addition, special emphasis has been given to the development of techniques with interactive or close to real-time performance. Physics-Based Deformable Models is suitable as a secondary text for graduate level courses in Computer Graphics, Computational Physics, Computer Vision, Medical Imaging, and Biomedical Engineering. In addition, this book is appropriate as a reference for researchers and practitioners in the above-mentioned fields.
This book covers the complete spectrum of deformable models, its evolution as an imagery field and its use in many biomedical engineering and clinical application disciplines. It includes level sets, PDEs, curve and surface evolution and their applications in biomedical fields covering both static and motion imagery.
This book covers dynamic simulation of deformable objects, which is one of the most challenging tasks in computer graphics and visualization. It focuses on the simulation of deformable models with anisotropic materials, one of the less common approaches in the existing research. Both physically-based and geometrically-based approaches are examined. The authors start with transversely isotropic materials for the simulation of deformable objects with fibrous structures. Next, they introduce a fiber-field incorporated corotational finite element model (CLFEM) that works directly with a constitutive model of transversely isotropic material. A smooth fiber-field is used to establish the local frames for each element. To introduce deformation simulation for orthotropic materials, an orthotropic deformation controlling frame-field is conceptualized and a frame construction tool is developed for users to define the desired material properties. The orthotropic frame-field is coupled with the CLFEM model to complete an orthotropic deformable model. Finally, the authors present an integrated real-time system for animation of skeletal characters with anisotropic tissues. To solve the problems of volume distortion and high computational costs, a strain-based PBD framework for skeletal animation is explained; natural secondary motion of soft tissues is another benefit. The book is written for those researchers who would like to develop their own algorithms. The key mathematical and computational concepts are presented together with illustrations and working examples. It can also be used as a reference book for graduate students and senior undergraduates in the areas of computer graphics, computer animation, and virtual reality. Academics, researchers, and professionals will find this to be an exceptional resource.
The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications. The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, such as those related with Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioengineering, Mathematics, Physics, Medical Imaging and Medicine.
This book is one outcome of the NATO Advanced Studies Institute (ASI) Workshop, "Speechreading by Man and Machine," held at the Chateau de Bonas, Castera-Verduzan (near Auch, France) from August 28 to Septem ber 8, 1995 - the first interdisciplinary meeting devoted the subject of speechreading ("lipreading"). The forty-five attendees from twelve countries covered the gamut of speechreading research, from brain scans of humans processing bi-modal stimuli, to psychophysical experiments and illusions, to statistics of comprehension by the normal and deaf communities, to models of human perception, to computer vision and learning algorithms and hardware for automated speechreading machines. The first week focussed on speechreading by humans, the second week by machines, a general organization that is preserved in this volume. After the in evitable difficulties in clarifying language and terminology across disciplines as diverse as human neurophysiology, audiology, psychology, electrical en gineering, mathematics, and computer science, the participants engaged in lively discussion and debate. We think it is fair to say that there was an atmosphere of excitement and optimism for a field that is both fascinating and potentially lucrative. Of the many general results that can be taken from the workshop, two of the key ones are these: • The ways in which humans employ visual image for speech recogni tion are manifold and complex, and depend upon the talker-perceiver pair, severity and age of onset of any hearing loss, whether the topic of conversation is known or unknown, the level of noise, and so forth.
This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing.
Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented.
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.
The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication.The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries.For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing.Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. - Includes contributions from internationally renowned authors from leading institutions - NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. - Provides a complete collection of algorithms in computer processing of medical images - Contains over 60 pages of stunning, four-color images