Defect Structure in Nanomaterials

Defect Structure in Nanomaterials

Author: J Gubicza

Publisher: Elsevier

Published: 2012-06-01

Total Pages: 389

ISBN-13: 0857096141

DOWNLOAD EBOOK

Nanomaterials exhibit unique mechanical and physical properties compared to their coarse-grained counterparts, and are consequently a major focus of current scientific research. Defect structure in nanomaterials provides a detailed overview of the processing methods, defect structure and defect-related mechanical and physical properties of a wide range of nanomaterials. The book begins with a review of the production methods of nanomaterials, including severe plastic deformation, powder metallurgy and electrodeposition. The lattice defect structures formed during the synthesis of nanomaterials are characterised in detail. Special attention is paid to the lattice defects in low stacking fault energy nanomaterials and metal – carbon nanotube composites. Topics covered in the second part of the book include a discussion of the thermal stability of defect structure in nanomaterials and a study of the influence of lattice defects on mechanical and hydrogen storage properties. - Gives in-depth, physically based explanations for the relationships between the defect structure and mechanical properties of nanomaterials - Covers a wide range of nanomaterials including metals; alloys; ceramics; diamond; carbon nanotubes and their composites - Provides a detailed characterization of the lattice defect structure in nanomaterials


Defect Structure and Properties of Nanomaterials

Defect Structure and Properties of Nanomaterials

Author: J Gubicza

Publisher: Woodhead Publishing

Published: 2017-03-05

Total Pages: 412

ISBN-13: 0081019181

DOWNLOAD EBOOK

Defect Structure and Properties of Nanomaterials: Second and Extended Edition covers a wide range of nanomaterials including metals, alloys, ceramics, diamond, carbon nanotubes, and their composites. This new edition is fully revised and updated, covering important advances that have taken place in recent years. Nanostructured materials exhibit unique mechanical and physical properties compared with their coarse-grained counterparts, therefore these materials are currently a major focus in materials science. The production methods of nanomaterials affect the lattice defect structure (vacancies, dislocations, disclinations, stacking faults, twins, and grain boundaries) that has a major influence on their mechanical and physical properties. In this book, the production routes of nanomaterials are described in detail, and the relationships between the processing conditions and the resultant defect structure, as well as the defect-related properties (e.g. mechanical behavior, electrical resistance, diffusion, corrosion resistance, thermal stability, hydrogen storage capability, etc.) are reviewed. In particular, new processing methods of nanomaterials are described in the chapter dealing with the manufacturing procedures of nanostructured materials. New chapters on (i) the experimental methods for the study of lattice defects, (ii) the defect structure in nanodisperse particles, and (iii) the influence of lattice defects on electrical, corrosion, and diffusion properties are included, to further enhance what has become a leading reference for engineering, physics, and materials science audiences. - Provides a detailed overview of processing methods, defect structure, and defect-related mechanical and physical properties of nanomaterials - Covers a wide range of nanomaterials including metals, alloys, ceramics, diamond, carbon nanotubes, and their composites - Includes new chapters covering recent advances in both processing techniques and methods for the study of lattice defects - Provides valuable information that will help materials scientists and engineers highlight lattice defects and the related mechanical and physical properties


Defects in Nanocrystals

Defects in Nanocrystals

Author: Sergio Pizzini

Publisher: CRC Press

Published: 2020-05-11

Total Pages: 295

ISBN-13: 1000066134

DOWNLOAD EBOOK

Defects in Nanocrystals: Structural and Physico-Chemical Aspects discusses the nature of semiconductor systems and the effect of the size and shape on their thermodynamic and optoelectronic properties at the mesoscopic and nanoscopic levels. The nanostructures considered in this book are individual nanometric crystallites, nanocrystalline films, and nanowires of which the thermodynamic, structural, and optical properties are discussed in detail. The work: Outlines the influence of growth processes on their morphology and structure Describes the benefits of optical spectroscopies in the understanding of the role and nature of defects in nanostructured semiconductors Considers the limits of nanothermodynamics Details the critical role of interfaces in nanostructural behavior Covers the importance of embedding media in the physico-chemical properties of nanostructured semiconductors Explains the negligible role of core point defects vs. surface and interface defects Written for researchers, engineers, and those working in the physical and physicochemical sciences, this work comprehensively details the chemical, structural, and optical properties of semiconductor nanostructures for the development of more powerful and efficient devices.


Mechanical Properties of Nanocrystalline Materials

Mechanical Properties of Nanocrystalline Materials

Author: James C. M. Li

Publisher: CRC Press

Published: 2011-09-02

Total Pages: 346

ISBN-13: 9814241970

DOWNLOAD EBOOK

This book concentrates on both understanding and development of nanocrystalline materials. The original relation that connects grain size and strength, known as the Hall-Petch relation, is studied in the nanometer grain size region. The breakdown of such a relation is a challenge. Why and how to overcome it? Is the dislocation mechanism still operating when the grain size is very small, approaching the amorphous limit? How do we go from the microstructure information to the continuum description of the mechanical properties?


Biomedical Applications of Nanoparticles

Biomedical Applications of Nanoparticles

Author: Alexandru Mihai Grumezescu

Publisher: William Andrew

Published: 2019-02-28

Total Pages: 532

ISBN-13: 0128166304

DOWNLOAD EBOOK

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles


Synthesis and Applications of Nanomaterials for Photocatalysis and Electrocatalysis

Synthesis and Applications of Nanomaterials for Photocatalysis and Electrocatalysis

Author: Giuseppe Cappelletti

Publisher: MDPI

Published: 2020-05-12

Total Pages: 212

ISBN-13: 3039288318

DOWNLOAD EBOOK

Heterogeneous catalysis, exploiting photo- and electrochemical reactions, has expanded rapidly in recent decades, having undergone various developments, especially from both energetic and environmental points of view. Photocatalysis plays a pivotal role in such applications as water splitting and air/water remediation. Electrocatalysis can be found in a large array of research fields, including the development of electroanalytical sensors, wastewater treatment, and energy conversion devices (e.g., batteries, fuel and solar cells, etc.). Therefore, the fine control of the synthetic procedures, together with extensive physicochemical characterisations of the tailor-made catalytic nanomaterials, are of fundamental importance to achieving the desired results. The present book will include recent enhancements in oxide/metal nanoparticles for photocatalytic and electrocatalytic applications, especially in the fields of pollutants abatement and energy conversion.


Nanomaterials

Nanomaterials

Author: Hideo Hosono

Publisher: Elsevier

Published: 2006-08-08

Total Pages: 478

ISBN-13: 0080463908

DOWNLOAD EBOOK

A research project at the Tokyo Institute of Technology – dedicated to fostering innovation in the field of nanomaterials – was selected as one of the 21st Century COE (Center of Excellence) programs. The achievements of this COE program, which builds on the strong tradition of materials science in the Institute, are summarized within this book. Nanomaterials: Research Towards Applications is divided into four main parts: - Revolutionary Oxides - State-of-the-Art Polymers - Nanostructure Design for New Functions - Nanostructure Architecture for Engineering Applications - Each section consists of three or four chapters related to inorganic, organic and metallic nanomaterials


Characterization Techniques for Nanomaterials

Characterization Techniques for Nanomaterials

Author: Imalka Munaweera

Publisher: CRC Press

Published: 2023-03-01

Total Pages: 100

ISBN-13: 1000883604

DOWNLOAD EBOOK

Manipulation of matter at the nanoscale level is the key factor in nanotechnology, and it is considered as a great driving force behind the current industrial revolution since it offers facile and feasible remedies for many problems. Because of the unique characteristic properties of nanomaterials, they can be employed in a wide variety of fields such as agriculture and food technology, catalysis, biomedical applications, tissue culture engineering, and fertilizers. In this regard, characterization of nanomaterials plays a significant role in determining their optical, thermal, and physicochemical properties. Many techniques have been used in nanomaterial characterization, and the most important techniques are discussed in detail in this book with their principles, basic operation procedures, and applications with suitable examples. In summary, this book offers broad content on the most important chemical and structural characterization techniques of nanomaterials. The book offers comprehensive coverage of the most essential topics, including the following: Provides a comprehensive understanding of physical and chemical characterization techniques of nanomaterials Includes details about basic principles of each characterization technique with appropriate examples Covers most of the important characterization techniques that should be known to undergraduate/early career scientists/beginners in materials chemistry Provides all the basic knowledge to understand and carry out the respective analysis of nanomaterials Fulfills the timely need of a book that covers the most important and useful characterization techniques in nanomaterial characterization Up to date, there are no other books/book chapters which discuss most of these nanocharacterization techniques in one segment with all the basic instrumentation details and narrated examples of nanomaterial characterization. In a nutshell, this book will be a great asset to undergraduates/early career scientists/beginners of material science as it provides a comprehensive and complete understanding of most of the techniques used in nanocharacterization tools in a short time. Intended audience is based on science education while specifically focusing on undergraduates/graduate students/early scientists and beginners of chemistry, materials chemistry, and nanotechnology and nanoscience.


Handbook Of Synthetic Methodologies And Protocols Of Nanomaterials (In 4 Volumes)

Handbook Of Synthetic Methodologies And Protocols Of Nanomaterials (In 4 Volumes)

Author:

Publisher: World Scientific

Published: 2019-08-13

Total Pages: 2370

ISBN-13: 9813277882

DOWNLOAD EBOOK

This comprehensive book set includes four volumes, covering the methods and protocols for the synthesis, fabrication, and characterization of nanomaterials. The first two books introduce the solution phase and gas synthesis approaches for nanomaterials, providing a number of most widely used protocols for each nanomaterial. An exhaustive list of nanomaterials are included, which are arranged according to the atomic number of the main element in the compound for easy search. For each material, the protocols are categorized according to the morphology of the nanostructure. A detailed reference is included in each protocol to point the readers to the source of the protocol. The third book describes many unconventional methods for the fabrication of nanostructures, including lithography and printing, self-assembly, chemical transformation, templated synthesis, electrospinning, laser induced synthesis, flame and plasma synthesis, and atomic layer deposition processes. The fourth book covers the typical methods for structural characterization of nanomaterials, including electron diffraction, electron microscopy, atomic force microscopy, scanning tunneling microscopy, X-ray diffraction, in-situ and operando X-ray techniques, X-ray absorption fine structure spectroscopy, static and dynamic light scattering, vibrational characterization methods, and NMR spectroscopy. In addition to the introduction of the basic operational principles of these tools, the book focuses explicitly on how they can be applied for analyzing nanomaterials. The handbook is a complete reference that can provide readers easily accessible information on how to synthesize and characterize nanomaterials desired for their target applications.


Magnetic Nanomaterials

Magnetic Nanomaterials

Author: Yanglong Hou

Publisher: John Wiley & Sons

Published: 2017-06-12

Total Pages: 602

ISBN-13: 3527803246

DOWNLOAD EBOOK

Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave-absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.