'Deep-Sea Sediments' focuses on the sedimentary processes operating within the various modern and ancient deep-sea environments. The chapters track the way of sedimentary particles from continental erosion or production in the marine realm, to transport into the deep sea, to final deposition on the sea floor.
For years scientists viewed the deep sea as calm, quiet, and undisturbed, with marine species existing in an ecologically stable and uniform environment. Recent discoveries have completely transformed that understanding and the deep sea is recognized as a complicated and dynamic environment with a rich diversity of marine species. Carefully designe
This first IAS Special Publication contains the oral presentations from a special symposium on pelagic sediments held in Zurich in 1973. The aim of the symposium was to bring together sea-borne researchers involved with the Deep Sea Drilling Project and land-locked researchers studying ancient sediments. If you are a member of the International Association of Sedimentologists, for purchasing details, please see: http://www.iasnet.org/publications/details.asp?code=SP1
Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm. The “Encyclopedia of Marine Geosciences” comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed from students and scholars in academia to engineers and decision makers in industry and politics.
The processes occurring in surface marine sediments have a profound effect on the local and global cycling of many elements. This graduate text presents the fundamentals of marine sediment geochemistry by examining the complex chemical, biological, and physical processes that contribute to the conversion of these sediments to rock, a process known as early diagenesis. Research over the past three decades has uncovered the fact that the oxidation of organic matter deposited in sediment acts as a causative agent for many early diagenetic changes. Summarizing and discussing these findings and providing a much-needed update to Robert Berner's Early Diagenesis: A Theoretical Approach, David J. Burdige describes the ways to quantify geochemical processes in marine sediment. By doing so, he offers a deeper understanding of the cycling of elements such as carbon, nitrogen, and phosphorus, along with important metals such as iron and manganese. No other book presents such an in-depth look at marine sediment geochemistry. Including the most up-to-date research, a complete survey of the subject, explanatory text, and the most recent mathematical formulations that have contributed to our greater understanding of early diagenesis, Geochemistry of Marine Sediments will interest graduate students of geology, geochemistry, and oceanography, as well as the broader community of earth scientists. It is poised to become the standard text on the subject for years to come.
Deep-water (below wave base) processes, although generally hidden from view, shape the sedimentary record of more than 65% of the Earth’s surface, including large parts of ancient mountain belts. This book aims to inform advanced-level undergraduate and postgraduate students, and professional Earth scientists with interests in physical oceanography and hydrocarbon exploration and production, about many of the important physical aspects of deep-water (mainly deep-marine) systems. The authors consider transport and deposition in the deep sea, trace-fossil assemblages, and facies stacking patterns as an archive of the underlying controls on deposit architecture (e.g., seismicity, climate change, autocyclicity). Topics include modern and ancient deep-water sedimentary environments, tectonic settings, and how basinal and extra-basinal processes generate the typical characteristics of basin slopes, submarine canyons, contourite mounds and drifts, submarine fans, basin floors and abyssal plains.
Rex and Etter present the first synthesis of patterns and causes of biodiversity in organisms that dwell in the vast sediment ecosystem of ocean floor. They offer a new understanding of marine biodiversity that will be of general interest to ecologists and is crucial to responsible exploitation of natural resources at the deep-sea floor.
This open access book discusses biogeochemical processes relevant to carbon and aims to provide readers, graduate students and researchers, with insight into the functioning of marine ecosystems. A carbon centric approach has been adopted, but other elements are included where relevant or needed. The book focuses on concepts and quantitative understanding of primary production, organic matter mineralization and sediment biogeochemistry. The impact of biogeochemical processes on inorganic carbon dynamics and organic matter transformation are also discussed.
Upwelling areas are among the most fertile regions of the ocean. In principle, upwelling is caused by the divergence of the flow in the surface layer of the ocean which arises as a consequence of a particular wind field, the presence of a coastline, or other special conditions. Since deeper oceanic layers are usually enriched wi th nutrients, it is the permanent supply of nutrients which forms the basis for the high producti vi ty of upwelling reg ions. The study of upwelling and its consequences were, for a long time, the task of individual scientists from all disciplines of marine science. Today, it is perhaps the branch of oceanography where interdisciplinary coopera tion has developed best. Becoming aware of the large potential yield of upwelling regions, governments in creased the funds for upwelling research. With research activities developed on a larger scale, interdisciplin ary cooperation became a necessity. On the international level, several symposia documented the rapid development. Three volumes reflect the results of these scientific meetings (Rapp. Proc.-Verb. 159, 1970; Inv. Pesq. 35, 1, 1971; Tethys §.' 1-2, 1974). The present book contains selected papers from the Third Symposium on Upwelling Ecosystems, which was held in Kiel in September 1975. Although the third of a series of meetings, it was the first where the word "ecosystem" stood in the title for a scientific program.